Schwinning, S. The ecohydrology of roots in rocks. Ecohydrology 3, 238–245 (2010).
Rose, K., Graham, R. & Parker, D. Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock. Oecologia 134, 46–54 (2003).
Google Scholar
Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).
Google Scholar
Schwinning, S. A critical question for the critical zone: how do plants use rock water? Plant Soil 454, 49–56 (2020).
Google Scholar
Fan, Y. et al. Hillslope hydrology in global change research and Earth system modeling. Wat. Resour. Res. 55, 1737–1772 (2019).
Google Scholar
Brantley, S. L. et al. Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences 14, 5115–5142 (2017).
Google Scholar
Chaney, N. W. et al. POLARIS soil properties: 30-m probabilistic maps of soil properties over the contiguous United States. Wat. Resour. Res. 55, 2916–2938 (2019).
Google Scholar
Uhlig, D., Schuessler, J. A., Bouchez, J., Dixon, J. L. & Blanckenburg, F. V. Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes. Biogeosciences 14, 3111–3128 (2017).
Google Scholar
Wald, J. A., Graham, R. C. & Schoeneberger, P. J. Distribution and properties of soft weathered bedrock at 1 m depth in the contiguous United States. Earth Surf. Process. Landf. 38, 614–626 (2013).
Google Scholar
Nimmo, J. R., Creasey, K. M., Perkins, K. S. & Mirus, B. B. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone. Hydrogeol. J. 25, 421–444 (2017).
Google Scholar
Leshem, B. Resting roots of Pinus halepensis: structure, function, and reaction to water stress. Bot. Gaz. 131, 99–104 (1970).
Google Scholar
Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).
Google Scholar
Hahm, W. J. et al. Lithologically controlled subsurface critical zone thickness and water storage capacity determine regional plant community composition. Wat. Resour. Res. 55, 3028–3055 (2019).
Google Scholar
Eggemeyer, K. D. & Schwinning, S. Biogeography of woody encroachment: why is mesquite excluded from shallow soils? Ecohydrology 2, 81–87 (2009).
Google Scholar
Madakumbura, G. D. et al. Recent California tree mortality portends future increase in drought-driven forest die-off. Environ. Res. Lett. 15, 124040 (2020).
Google Scholar
McDowell, N. G. et al. Mechanisms of a coniferous woodland persistence under drought and heat. Environ. Res. Lett. 14, 045014 (2019).
Google Scholar
McEvoy, D. J., Pierce, D. W., Kalansky, J. F., Cayan, D. R. & Abatzoglou, J. T. Projected changes in reference evapotranspiration in California and Nevada: implications for drought and wildland fire danger. Earths Future 8, e2020EF001736 (2020).
Google Scholar
Hauwert, N. M. & Sharp, J. M. Measuring autogenic recharge over a karst aquifer utilizing eddy covariance evapotranspiration. J. Water Resour. Prot. 6, 869–879 (2014).
Google Scholar
Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).
Google Scholar
Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).
Google Scholar
Hahm, W. J. et al. Oak transpiration drawn from the weathered bedrock vadose zone in the summer dry season. Wat. Resour. Res. 56, e2020WR027419 (2020).
Google Scholar
Cannon, W. A. The Root Habits of Desert Plants 131 (Carnegie Institute of Washington, 1911).
Daily reservoir storage summary. California Department of Water Resources https://info.water.ca.gov/cgi-progs/reservoirs/RES (2020).
USGS water use data for California. United States Geological Society https://waterdata.usgs.gov/ca/nwis/water_use/ (2020).
David, T., Ferreira, M., Cohen, S., Pereira, J. & David, J. Constraints on transpiration from an evergreen oak tree in southern Portugal. Agric. For. Meteorol. 122, 193–205 (2004).
Google Scholar
Querejeta, J. I., Estrada-Medina, H., Allen, M. F. & Jimenez-Osornio, J. J. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 152, 26–36 (2007).
Google Scholar
Carrière, S. D. et al. The role of deep vadose zone water in tree transpiration during drought periods in karst settings—insights from isotopic tracing and leaf water potential. Sci. Total Environ. 699, 134332 (2020).
Google Scholar
Rambal, S. Water balance and pattern of root water uptake by a Quercus coccifera L. evergreen scrub. Oecologia 62, 18–25 (1984).
Google Scholar
Montaldo, N. et al. Rock water as a key resource for patchy ecosystems on shallow soils: digging deep tree clumps subsidize surrounding surficial grass. Earths Future 9, e2020EF001870 (2021).
Google Scholar
Corona, R. & Montaldo, N. On the transpiration of wild olives under water-limited conditions in a heterogeneous ecosystem with shallow soil over fractured rock. J. Hydrol. Hydromech. 68, 338–350 (2020).
Google Scholar
Nardini, A. et al. Water ‘on the rocks’: a summer drink for thirsty trees? New Phytol. 229, 199–212 (2021).
Google Scholar
Ruiz, L. et al. Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): regolith matric storage buffers the groundwater recharge process. J. Hydrol. 380, 460–472 (2010).
Google Scholar
Ding, Y., Nie, Y., Chen, H., Wang, K. & Querejeta, J. I. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. New Phytol. 229, 1339–1353 (2021).
Google Scholar
Dawson, T. E., Hahm, W. J. & Crutchfield-Peters, K. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. New Phytol. 226, 666–671 (2020).
Google Scholar
Salve, R., Rempe, D. M. & Dietrich, W. E. Rain, rock moisture dynamics, and the rapid response of perched groundwater in weathered, fractured argillite underlying a steep hillslope. Wat. Resour. Res. 48, W11528 (2012).
Google Scholar
Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).
Google Scholar
Kapnick, S. & Hall, A. Causes of recent changes in western North American snowpack. Clim. Dyn. 38, 1885–1899 (2012).
Google Scholar
Tune, A. K., Druhan, J. L., Wang, J., Bennett, P. C. & Rempe, D. M. Carbon dioxide production in bedrock beneath soils substantially contributes to forest carbon cycling. J. Geophys. Res. Biogeosci. 125, e2020JG005795 (2020).
Google Scholar
Hasenmueller, E. A. et al. Weathering of rock to regolith: the activity of deep roots in bedrock fractures. Geoderma 300, 11–31 (2017).
Google Scholar
Yang, L. et al. A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).
Soil Survey Staff Gridded National Soil Survey Geographic (gNATSGO) Database for the Conterminous United States (USDA, 2019); https://nrcs.app.box.com/v/soils
QGIS Development Team QGIS Geographic Information System (Open Source Geospatial Foundation, 2019); http://qgis.org
O’Geen, A. T. et al. Southern Sierra Critical Zone Observatory and Kings River Experimental Watersheds: a synthesis of measurements, new insights, and future directions. Vadose Zone J. 17, 180081 (2018).
Google Scholar
Anderson, M. A., Graham, R. C., Alyanakian, G. J. & Martynn, D. Z. Late summer water status of soils and weathered bedrock in a giant sequoia grove. Soil Sci. 160, 415–422 (1995).
Google Scholar
Hubbert, K. R., Graham, R. C. & Anderson, M. A. Soil and weathered bedrock: components of a Jeffrey pine plantation substrate. Soil Sci. Soc. Am. J. 65, 1255–1262 (2001).
Google Scholar
Bornyasz, M., Graham, R. & Allen, M. Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma 126, 141–160 (2005).
Google Scholar
Sternberg, P., Anderson, M., Graham, R., Beyers, J. & Tice, K. Root distribution and seasonal water status in weathered granitic bedrock under chaparral. Geoderma 72, 89–98 (1996).
Google Scholar
Graham, R. C., Sternberg, P. D. & Tice, K. R. Morphology, porosity, and hydraulic conductivity of weathered granitic bedrock and overlying soils. Soil Sci. Soc. Am. J. 61, 516–522 (1997).
Google Scholar
McCole, A. A. & Stern, L. A. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water. J. Hydrol. 342, 238–248 (2007).
Google Scholar
Schwinning, S. The water relations of two evergreen tree species in a karst savanna. Oecologia 158, 373–383 (2008).
Google Scholar
McCormick, E. L. et al. Dataset for “Evidence for widespread woody plant use of water stored in bedrock”. Hydroshare https://doi.org/10.4211/hs.a2f0d5fd10f14cd189a3465f72cba6f3 (2021).
Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).
Google Scholar
Schenk, H. J. & Jackson, R. B. The global biogeography of roots. Ecol. Monogr. 72, 311–328 (2002).
Google Scholar
Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90, 480–494 (2002).
Google Scholar
Fan, Y., Miguez-Macho, G., Jobbagy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).
Google Scholar
Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).
Google Scholar
Daly, C., Smith, J. I. & Olson, K. V. Mapping atmospheric moisture climatologies across the conterminous United States. PLoS ONE 10, e0141140 (2015).
Google Scholar
Zhang, Y. et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 222, 165–182 (2019).
Google Scholar
Gan, R. et al. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 11, e1974 (2018).
Google Scholar
Dralle, D. N., Hahm, W. J., Chadwick, K. D., McCormick, E. L. & Rempe, D. M. Technical note: accounting for snow in the estimation of root-zone water storage capacity from precipitation and evapotranspiration fluxes. Hydrol. Earth Syst. Sci. 25, 2861–2867 (2021).
Google Scholar
Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).
Google Scholar
Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
Google Scholar
Singh, C., Wang-Erlandsson, L., Fetzer, I., Rockstrom, J. & van der Ent, R. Rootzone storage capacity reveals drought coping strategies along rainforest savanna transitions. Environ. Res. Lett. 15, 124021 (2020).
Google Scholar
Hall, D., Riggs, G. & Salomonson, V. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6 [Data set] (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2016).
Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015).
Peel, M. C., Finlayson, B. L. & Mcmahon, T. A. Updated world map of the Koppen–Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4, 439–473 (2007).
Google Scholar
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
Google Scholar
Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).
Google Scholar
Niemeyer, R. J. et al. Spatiotemporal soil and saprolite moisture dynamics across a semi-arid woody plant gradient. J. Hydrol. 544, 21–35 (2017).
Google Scholar
Pedrazas, M. A. et al. The relationship between topography bedrock weathering and water storage across a sequence of ridges and valleys. J. Geophys. Res. Earth Surf. 126, e2020JF005848 (2021).
Google Scholar
Arkley, R. J. Soil moisture use by mixed conifer forest in a summer-dry climate. Soil Sci. Soc. Am. J. 45, 423–427 (1981).
Google Scholar
Zwieniecki, M. A. & Newton, M. Water-holding characteristics of metasedimentary rock in selected forest ecosystems in southwestern Oregon. Soil Sci. Soc. Am. J. 60, 1578–1582 (1996).
Google Scholar
Hellmers, H., Horton, J. S., Juhren, G. & O’Keefe, J. Root systems of some chaparral plants in southern California. Ecology 36, 667–678 (1955).
Google Scholar
Cardella Dammeyer, H., Schwinning, S., Schwartz, B. F. & Moore, G. W. Effects of juniper removal and rainfall variation on tree transpiration in a semi-arid karst: evidence of complex water storage dynamics. Hydrol. Process. 30, 4568–4581 (2016).
Google Scholar
Twidwell, D. et al. Drought-induced woody plant mortality in an encroached semi-arid savanna depends on topoedaphic factors and land management. Appl. Veg. Sci. 17, 42–52 (2013).
Google Scholar
Davis, E. A. Root system of shrub live oak in relation to water yield by chaparral. Proceedings of the 1977 Meetings of the Arizona Section of the American Water Resources Association and the Hydrology Section of the Arizona Academy of Sciences. Hydrol. Water Resour. Ariz. Southwest 7, 241–248 (1977).
West, A. G., Hultine, K. R., Burtch, K. G., & Ehleringer, J. R. Seasonal variations in moisture use in a piñon–juniper woodland. Oecologia 153, 787–798 (2007).
Google Scholar
Seyfried, M. S. & Wilcox, B. P. Soil water storage and rooting depth: key factors controlling recharge on rangelands. Hydrol. Process. 20, 3261–3275 (2006).
Google Scholar
Dietrich, W. E. & Dunne, T. Sediment budget for a small catchment in mountainous terrain. Zeitschrift Für Geomorphologie 29, 191–206 (1978).
Litvak, M. E., Schwinning, S. & Heilman, J. L. in Ecosystem Function in Savannas (eds Hill, M. J. & Hanan, N. P.) 117–134 (2010).
Source: Ecology - nature.com