in

Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies

  • 1.

    Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: Selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Poinsot, D., Charlat, S. & Merçot, H. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: Confronting the models with the facts. BioEssays 25, 259–265 (2003).

    PubMed  Article  Google Scholar 

  • 3.

    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Vavre, F., Fleury, F., Lepetit, D., Fouillet, P. & Boulétreau, M. Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol. Biol. Evol. 16, 1711–1723 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Sintupachee, S., Milne, J. R., Poonchaisri, S., Baimai, V. & Kittayapong, P. Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb. Ecol. 51, 294–301 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Li, S.-J. et al. Plantmediated horizontal transmission of Wolbachia between whiteflies. ISME J. 11, 1019–1028 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Turelli, M. & Hoffmann, A. A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353, 440 (1991).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    Oliveira, D. C. S. G., Raychoudhury, R., Lavrov, D. V. & Werren, J. H. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol. Biol. Evol. 25, 2167–2180 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Raychoudhury, R. et al. Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America. Heredity 104, 318–326 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Telschow, A., Gadau, J., Werren, J. H. & Kobayashi, Y. Genetic incompatibilities between mitochondria and nuclear genes: Effect on gene flow and speciation. Front. Genet. 10, 62 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Kodandaramaiah, U., Simonsen, T. J., Bromilow, S., Wahlberg, N. & Sperling, F. Deceptive single-locus taxonomy and phylogeography: Wolbachia-associated divergence in mitochondrial DNA is not reflected in morphology and nuclear markers in a butterfly species. Ecol. Evol. 3, 5167–5176 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Ritter, S. et al. Wolbachia infections mimic cryptic speciation in two parasitic butterfly species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae). PLoS ONE 8, e78107 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Whitworth, T. L., Dawson, R. D., Magalon, H. & Baudry, E. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proc. R. Soc. B Biol. Sci. 274, 1731–1739 (2007).

    CAS  Article  Google Scholar 

  • 14.

    Barton, N. & Bengtsson, B. O. The barrier to genetic exchange between hybridising populations. Heredity 57, 357–376 (1986).

    PubMed  Article  Google Scholar 

  • 15.

    Vavre, F., Fleury, F., Varaldi, J., Fouillet, P. & Boulétreau, M. Infection polymorphism and cytoplasmic incompatibility in Hymenoptera-Wolbachia associations. Heredity 88, 361–365 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Jaenike, J., Dyer, K. A., Cornish, C. & Minhas, M. S. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol. 4, e325 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Telschow, A., Flor, M., Kobayashi, Y., Hammerstein, P. & Werren, J. H. Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: Mainland-island model. PLoS ONE 2, e701 (2007).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    Flor, M., Hammerstein, P. & Telschow, A. Wolbachia-induced unidirectional cytoplasmic incompatibility and the stability of infection polymorphism in parapatric host populations. J. Evol. Biol. 20, 696–706 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Graham, R. I. & Wilson, K. Male-killing Wolbachia and mitochondrial selective sweep in a migratory African insect. BMC Evol. Biol. 12, 204 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Ahmed, M. Z., Breinholt, J. W. & Kawahara, A. Y. Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evol. Biol. 16, 118 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 21.

    Salunkhe, R. C., Narkhede, K. P. & Shouche, Y. S. Distribution and evolutionary impact of Wolbachia on butterfly hosts. Indian J. Microbiol. 54, 249 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Talavera, G., Lukhtanov, V. A., Pierce, N. E. & Vila, R. Establishing criteria for higher-level classification using molecular data: The systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae). Cladistics 29, 166–192 (2013).

    Article  Google Scholar 

  • 23.

    Espeland, M. et al. A Comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770-778.e5 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Dincă, V., Lee, K. M., Vila, R. & Mutanen, M. The conundrum of species delimitation: A genomic perspective on a mitogenetically super-variable butterfly. Proc. R. Soc. B Biol. Sci. 286, 20191311 (2019).

    Article  CAS  Google Scholar 

  • 25.

    Gaunet, A. et al. Two consecutive Wolbachia-mediated mitochondrial introgressions obscure taxonomy in Palearctic swallowtail butterflies (Lepidoptera, Papilionidae). Zool. Scr. 48, 507–519 (2019).

    Article  Google Scholar 

  • 26.

    Dinca, V., Zakharov, E. V., Hebert, P. D. N. & Vila, R. Complete DNA barcode reference library for a country’s butterfly fauna reveals high performance for temperate Europe. Proc. R. Soc. B Biol. Sci. 278, 347–355 (2011).

    Article  Google Scholar 

  • 27.

    Ugelvig, L. V., Vila, R., Pierce, N. E. & Nash, D. R. A phylogenetic revision of the Glaucopsyche section (Lepidoptera: Lycaenidae), with special focus on the PhengarisMaculinea clade. Mol. Phylogenet. Evol. 61, 237–243 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Sañudo-Restrepo, C. P., Dincă, V., Talavera, G. & Vila, R. Biogeography and systematics of Aricia butterflies (Lepidoptera, Lycaenidae). Mol. Phylogenet. Evol. 66, 369–379 (2013).

    PubMed  Article  Google Scholar 

  • 29.

    Todisco, V. et al. Molecular phylogeny of the Palaearctic butterfly genus Pseudophilotes (Lepidoptera: Lycaenidae) with focus on the Sardinian endemic P. barbagiae. BMC Zool. 3, 4 (2018).

    Article  Google Scholar 

  • 30.

    Sucháčková Bartoňová, A., Beneš, J., Fric, Z. F. & Konvička, M. Genetic confirmation of Aricia artaxerxes (Fabricius, 1793) (Lepidoptera, Lycaenidae) in the Czech Republic, its conservation significance and biogeographic context. Nota Lepidopterol. 42(2), 163–176 (2019).

    Article  Google Scholar 

  • 31.

    Kames, P. Die Aufklärung des Differenzierungsgrades und der Phylogenese der beiden Aricia-Arten agestis Den. et Schiff. und artaxerxes Fabr. (allous G.-Hb.) mit Hilfe von Eizuchten und Kreuzungsversuchen (Lep., Lycaenidae). Mitt. Entomol. Ges. Basel, N. F. 26, 7–13, 29–64 (1976).

  • 32.

    Korb, S., Faltynek Fric, Z. & Bartonova, A. On the status of Aricia cf. scythissa (Nekrutenko, 1985) (Lepidoptera: Lycaenidae) based on molecular investigations. Euroasian Entomol. J. 14, 237–240 (2015).

    Google Scholar 

  • 33.

    Wiemers, M., Chazot, N., Wheat, C. W., Schweiger, O. & Wahlberg, N. A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys 938, 97–124 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Settele, J., Steiner, R., Reinhardt, R., Feldmann, R. & Hermann, G. Schmetterlinge: Die Tagfalter Deutschlands (Ulmer Eugen Verlag, Stuttgart, 2015).

    Google Scholar 

  • 35.

    Monteiro, A. & Pierce, N. E. Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1alpha gene sequences. Mol. Phylogenet. Evol. 18, 264–281 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Wahlberg, N. & Wheat, C. W. Genomic outposts serve the phylogenomic pioneers: Designing novel nuclear markers for genomic DNA extractions of lepidoptera. Syst. Biol. 57, 231–242 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Sahoo, R. K. et al. Evolution of Hypolimnas butterflies (Nymphalidae): Out-of-Africa origin and Wolbachia-mediated introgression. Mol. Phylogenet. Evol. 123, 50–58 (2018).

    PubMed  Article  Google Scholar 

  • 39.

    Baldo, L. et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Kearse, M. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Kajtoch, Ł et al. Using host species traits to understand the Wolbachia infection distribution across terrestrial beetles. Sci. Rep. 9, 847 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 42.

    Ratnasingham, S. & Hebert, P. D. N. bold: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).

  • 43.

    Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article  Google Scholar 

  • 45.

    Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 3 (2018).

  • 47.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2019).

  • 48.

    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS  Article  Google Scholar 

  • 49.

    Dellicour, S. & Mardulyn, P. SPADS 1.0: A toolbox to perform spatial analyses on DNA sequence data sets. Mol. Ecol. Resour. 14, 647–651 (2014).

    PubMed  Article  Google Scholar 

  • 50.

    Watson, D. F. & Philip, G. M. A Refinement of inverse distance weighted interpolation. Geoprocessing 2, 315–327 (1985).

    Google Scholar 

  • 51.

    Manni, F., Guérard, E. & Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by using Monmonier’s algorithm. Hum. Biol. 76, 173–190 (2004).

    PubMed  Article  Google Scholar 

  • 52.

    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 016 (2018).

    Article  Google Scholar 

  • 53.

    Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/. (2014).

  • 55.

    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).

  • 57.

    Aagaard, K. et al. Phylogenetic relationships in brown argus butterflies (Lepidoptera: Lycaenidae: Aricia) from northwestern Europe. Biol. J. Linn. Soc. 75, 27–37 (2002).

    Article  Google Scholar 

  • 58.

    Hernández-Roldán, J. L. et al. Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies. Mol. Ecol. 25, 4267–4284 (2016).

    PubMed  Article  Google Scholar 

  • 59.

    Jiang, W. et al. Wolbachia infection status and genetic structure in natural populations of Polytremis nascens (Lepidoptera: Hesperiidae). Infect. Genet. Evol. 27, 202–211 (2014).

    PubMed  Article  Google Scholar 

  • 60.

    Mallet, J., Wynne, I. R. & Thomas, C. D. Hybridisation and climate change: Brown argus butterflies in Britain (Polyommatus subgenus Aricia). Insect Conserv. Divers. 4, 192–199 (2011).

    Article  Google Scholar 

  • 61.

    Gutzwiller, F., Dedeine, F., Kaiser, W., Giron, D. & Lopez-Vaamonde, C. Correlation between the green-island phenotype and Wolbachia infections during the evolutionary diversification of Gracillariidae leaf-mining moths. Ecol. Evol. 5, 4049–4062 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Mascarenhas, R. O., Prezotto, L. F., Perondini, A. L. P., Marino, C. L. & Selivon, D. Wolbachia in guilds of Anastrepha fruit flies (Tephritidae) and parasitoid wasps (Braconidae). Genet. Mol. Biol. 39, 600–610 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Sucháčková Bartoňová, A. et al. Recently lost connectivity in the Western Palaearctic steppes: The case of a scarce specialist butterfly. Conserv. Genet. 21, 561–575 (2020).

    Article  Google Scholar 

  • 64.

    Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: The rule and not the exception?. Front. Zool. 9, 1–12 (2012).

    Article  Google Scholar 

  • 65.

    de Lattin, G. Grundriss der Zoogeographie (VEB Gustav Fischer Verlag, Jena, 1967).

    Google Scholar 

  • 66.

    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).

    Article  Google Scholar 

  • 67.

    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467 (2005).

    PubMed  Article  Google Scholar 

  • 69.

    Heiser, M., Dapporto, L. & Schmitt, T. Coupling impoverishment analysis and partitioning of beta diversity allows a comprehensive description of Odonata biogeography in the Western Mediterranean. Org. Divers. Evol. 14, 203–214 (2014).

    Article  Google Scholar 

  • 70.

    Vodă, R. et al. Historical and contemporary factors generate unique butterfly communities on islands. Sci. Rep. 6, 28828 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 71.

    Scalercio, S. et al. How long is 3 km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. J. Anim. Ecol. 89, 2013–2026 (2020).

    PubMed  Article  Google Scholar 

  • 72.

    Descimon, H. & Mallet, J. Bad species. in Ecology and Evolution of European Butterflies (Oxford University Press, Oxford, 2009).

  • 73.

    Habel, J. C., Schmitt, T. & Müller, P. The fourth paradigm pattern of post-glacial range expansion of European terrestrial species: The phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera). J. Biogeogr. 32, 1489–1497 (2005).

    Article  Google Scholar 

  • 74.

    Varga, Z. Das Prinzip der areal-analytischen Methode in der Zoogeographie und die Faunenelement-Einteilung der europäischen Tagschmetterlinge (Lepidoptera: Diurna). Acta Biol. Debrecina 14, 223–285 (1977).

    Google Scholar 

  • 75.

    Schmitt, T. & Zimmermann, M. To hybridize or not to hybridize: What separates two genetic lineages of the Chalk-hill Blue Polyommatus coridon (Lycaenidae, Lepidoptera) along their secondary contact zone throughout eastern Central Europe?. J. Zool. Syst. Evol. Res. 50, 106–115 (2012).

    Article  Google Scholar 

  • 76.

    Janoušek, V. et al. Genome-wide architecture of reproductive isolation in a naturally occurring hybrid zone between Musmusculus musculus and M. m. domesticus. Mol. Ecol. 21, 3032–3047 (2012).

    PubMed  Article  Google Scholar 

  • 77.

    Nürnberger, B., Lohse, K., Fijarczyk, A., Szymura, J. M. & Blaxter, M. L. Para-allopatry in hybridizing fire-bellied toads (Bombinabombina and B. variegata): Inference from transcriptome-wide coalescence analyses. Evolution 70, 1803–1818 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 78.

    Vitali, F. & Schmitt, T. Ecological patterns strongly impact the biogeography of western Palaearctic longhorn beetles (Coleoptera: Cerambycoidea). Org. Divers. Evol. 17, 163–180 (2017).

    Article  Google Scholar 

  • 79.

    Narita, S., Nomura, M., Kato, Y. & Fukatsu, T. Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: Evolutionary and biogeographical implications. Mol. Ecol. 15, 1095–1108 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 80.

    Kageyama, S. et al. Feminizing Wolbachia endosymbiont disrupts maternal sex chromosome inheritance in a butterfly species. Evol. Lett. 1, 232–244 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 81.

    Nosil, P., Harmon, L. J. & Seehausen, O. Ecological explanations for (incomplete) speciation. Trends Ecol. Evol. (Amst.) 24, 145–156 (2009).

    Article  Google Scholar 

  • 82.

    Talavera, G., Lukhtanov, V. A., Rieppel, L., Pierce, N. E. & Vila, R. In the shadow of phylogenetic uncertainty: The recent diversification of Lysandra butterflies through chromosomal change. Mol. Phylogenet. Evol. 69, 469–478 (2013).

    PubMed  Article  Google Scholar 

  • 83.

    Kühne, G., Kosuch, J., Hochkirch, A. & Schmitt, T. Extra-Mediterranean glacial refugia in a Mediterranean faunal element: The phylogeography of the chalk-hill blue Polyommatus coridon (Lepidoptera, Lycaenidae). Sci. Rep. 7, srep43533 (2017).

    ADS  Article  Google Scholar 

  • 84.

    Wiemers, M., Keller, A. & Wolf, M. ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus). BMC Evol. Biol. 9, 300 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 85.

    Duron, O. & Hurst, G. D. Arthropods and inherited bacteria: From counting the symbionts to understanding how symbionts count. BMC Biol. 11, 45 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 86.

    Bailly-Bechet, M. et al. How long does Wolbachia remain on board?. Mol. Biol. Evol. 34, 1183–1193 (2017).

    CAS  PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    There is little evidence that spicy food in hot countries is an adaptation to reducing infection risk

    Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota