in

Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies

  • 1.

    Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: Selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Poinsot, D., Charlat, S. & Merçot, H. On the mechanism of Wolbachia-induced cytoplasmic incompatibility: Confronting the models with the facts. BioEssays 25, 259–265 (2003).

    PubMed  Article  Google Scholar 

  • 3.

    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Vavre, F., Fleury, F., Lepetit, D., Fouillet, P. & Boulétreau, M. Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol. Biol. Evol. 16, 1711–1723 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Sintupachee, S., Milne, J. R., Poonchaisri, S., Baimai, V. & Kittayapong, P. Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb. Ecol. 51, 294–301 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Li, S.-J. et al. Plantmediated horizontal transmission of Wolbachia between whiteflies. ISME J. 11, 1019–1028 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Turelli, M. & Hoffmann, A. A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353, 440 (1991).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    Oliveira, D. C. S. G., Raychoudhury, R., Lavrov, D. V. & Werren, J. H. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol. Biol. Evol. 25, 2167–2180 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Raychoudhury, R. et al. Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America. Heredity 104, 318–326 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Telschow, A., Gadau, J., Werren, J. H. & Kobayashi, Y. Genetic incompatibilities between mitochondria and nuclear genes: Effect on gene flow and speciation. Front. Genet. 10, 62 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Kodandaramaiah, U., Simonsen, T. J., Bromilow, S., Wahlberg, N. & Sperling, F. Deceptive single-locus taxonomy and phylogeography: Wolbachia-associated divergence in mitochondrial DNA is not reflected in morphology and nuclear markers in a butterfly species. Ecol. Evol. 3, 5167–5176 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Ritter, S. et al. Wolbachia infections mimic cryptic speciation in two parasitic butterfly species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae). PLoS ONE 8, e78107 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Whitworth, T. L., Dawson, R. D., Magalon, H. & Baudry, E. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proc. R. Soc. B Biol. Sci. 274, 1731–1739 (2007).

    CAS  Article  Google Scholar 

  • 14.

    Barton, N. & Bengtsson, B. O. The barrier to genetic exchange between hybridising populations. Heredity 57, 357–376 (1986).

    PubMed  Article  Google Scholar 

  • 15.

    Vavre, F., Fleury, F., Varaldi, J., Fouillet, P. & Boulétreau, M. Infection polymorphism and cytoplasmic incompatibility in Hymenoptera-Wolbachia associations. Heredity 88, 361–365 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Jaenike, J., Dyer, K. A., Cornish, C. & Minhas, M. S. Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol. 4, e325 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Telschow, A., Flor, M., Kobayashi, Y., Hammerstein, P. & Werren, J. H. Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: Mainland-island model. PLoS ONE 2, e701 (2007).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    Flor, M., Hammerstein, P. & Telschow, A. Wolbachia-induced unidirectional cytoplasmic incompatibility and the stability of infection polymorphism in parapatric host populations. J. Evol. Biol. 20, 696–706 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Graham, R. I. & Wilson, K. Male-killing Wolbachia and mitochondrial selective sweep in a migratory African insect. BMC Evol. Biol. 12, 204 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Ahmed, M. Z., Breinholt, J. W. & Kawahara, A. Y. Evidence for common horizontal transmission of Wolbachia among butterflies and moths. BMC Evol. Biol. 16, 118 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 21.

    Salunkhe, R. C., Narkhede, K. P. & Shouche, Y. S. Distribution and evolutionary impact of Wolbachia on butterfly hosts. Indian J. Microbiol. 54, 249 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Talavera, G., Lukhtanov, V. A., Pierce, N. E. & Vila, R. Establishing criteria for higher-level classification using molecular data: The systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae). Cladistics 29, 166–192 (2013).

    Article  Google Scholar 

  • 23.

    Espeland, M. et al. A Comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770-778.e5 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Dincă, V., Lee, K. M., Vila, R. & Mutanen, M. The conundrum of species delimitation: A genomic perspective on a mitogenetically super-variable butterfly. Proc. R. Soc. B Biol. Sci. 286, 20191311 (2019).

    Article  CAS  Google Scholar 

  • 25.

    Gaunet, A. et al. Two consecutive Wolbachia-mediated mitochondrial introgressions obscure taxonomy in Palearctic swallowtail butterflies (Lepidoptera, Papilionidae). Zool. Scr. 48, 507–519 (2019).

    Article  Google Scholar 

  • 26.

    Dinca, V., Zakharov, E. V., Hebert, P. D. N. & Vila, R. Complete DNA barcode reference library for a country’s butterfly fauna reveals high performance for temperate Europe. Proc. R. Soc. B Biol. Sci. 278, 347–355 (2011).

    Article  Google Scholar 

  • 27.

    Ugelvig, L. V., Vila, R., Pierce, N. E. & Nash, D. R. A phylogenetic revision of the Glaucopsyche section (Lepidoptera: Lycaenidae), with special focus on the PhengarisMaculinea clade. Mol. Phylogenet. Evol. 61, 237–243 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Sañudo-Restrepo, C. P., Dincă, V., Talavera, G. & Vila, R. Biogeography and systematics of Aricia butterflies (Lepidoptera, Lycaenidae). Mol. Phylogenet. Evol. 66, 369–379 (2013).

    PubMed  Article  Google Scholar 

  • 29.

    Todisco, V. et al. Molecular phylogeny of the Palaearctic butterfly genus Pseudophilotes (Lepidoptera: Lycaenidae) with focus on the Sardinian endemic P. barbagiae. BMC Zool. 3, 4 (2018).

    Article  Google Scholar 

  • 30.

    Sucháčková Bartoňová, A., Beneš, J., Fric, Z. F. & Konvička, M. Genetic confirmation of Aricia artaxerxes (Fabricius, 1793) (Lepidoptera, Lycaenidae) in the Czech Republic, its conservation significance and biogeographic context. Nota Lepidopterol. 42(2), 163–176 (2019).

    Article  Google Scholar 

  • 31.

    Kames, P. Die Aufklärung des Differenzierungsgrades und der Phylogenese der beiden Aricia-Arten agestis Den. et Schiff. und artaxerxes Fabr. (allous G.-Hb.) mit Hilfe von Eizuchten und Kreuzungsversuchen (Lep., Lycaenidae). Mitt. Entomol. Ges. Basel, N. F. 26, 7–13, 29–64 (1976).

  • 32.

    Korb, S., Faltynek Fric, Z. & Bartonova, A. On the status of Aricia cf. scythissa (Nekrutenko, 1985) (Lepidoptera: Lycaenidae) based on molecular investigations. Euroasian Entomol. J. 14, 237–240 (2015).

    Google Scholar 

  • 33.

    Wiemers, M., Chazot, N., Wheat, C. W., Schweiger, O. & Wahlberg, N. A complete time-calibrated multi-gene phylogeny of the European butterflies. ZooKeys 938, 97–124 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Settele, J., Steiner, R., Reinhardt, R., Feldmann, R. & Hermann, G. Schmetterlinge: Die Tagfalter Deutschlands (Ulmer Eugen Verlag, Stuttgart, 2015).

    Google Scholar 

  • 35.

    Monteiro, A. & Pierce, N. E. Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1alpha gene sequences. Mol. Phylogenet. Evol. 18, 264–281 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Wahlberg, N. & Wheat, C. W. Genomic outposts serve the phylogenomic pioneers: Designing novel nuclear markers for genomic DNA extractions of lepidoptera. Syst. Biol. 57, 231–242 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Sahoo, R. K. et al. Evolution of Hypolimnas butterflies (Nymphalidae): Out-of-Africa origin and Wolbachia-mediated introgression. Mol. Phylogenet. Evol. 123, 50–58 (2018).

    PubMed  Article  Google Scholar 

  • 39.

    Baldo, L. et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Kearse, M. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Kajtoch, Ł et al. Using host species traits to understand the Wolbachia infection distribution across terrestrial beetles. Sci. Rep. 9, 847 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 42.

    Ratnasingham, S. & Hebert, P. D. N. bold: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).

  • 43.

    Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article  Google Scholar 

  • 45.

    Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 3 (2018).

  • 47.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2019).

  • 48.

    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS  Article  Google Scholar 

  • 49.

    Dellicour, S. & Mardulyn, P. SPADS 1.0: A toolbox to perform spatial analyses on DNA sequence data sets. Mol. Ecol. Resour. 14, 647–651 (2014).

    PubMed  Article  Google Scholar 

  • 50.

    Watson, D. F. & Philip, G. M. A Refinement of inverse distance weighted interpolation. Geoprocessing 2, 315–327 (1985).

    Google Scholar 

  • 51.

    Manni, F., Guérard, E. & Heyer, E. Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by using Monmonier’s algorithm. Hum. Biol. 76, 173–190 (2004).

    PubMed  Article  Google Scholar 

  • 52.

    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 016 (2018).

    Article  Google Scholar 

  • 53.

    Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/. (2014).

  • 55.

    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).

  • 57.

    Aagaard, K. et al. Phylogenetic relationships in brown argus butterflies (Lepidoptera: Lycaenidae: Aricia) from northwestern Europe. Biol. J. Linn. Soc. 75, 27–37 (2002).

    Article  Google Scholar 

  • 58.

    Hernández-Roldán, J. L. et al. Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies. Mol. Ecol. 25, 4267–4284 (2016).

    PubMed  Article  Google Scholar 

  • 59.

    Jiang, W. et al. Wolbachia infection status and genetic structure in natural populations of Polytremis nascens (Lepidoptera: Hesperiidae). Infect. Genet. Evol. 27, 202–211 (2014).

    PubMed  Article  Google Scholar 

  • 60.

    Mallet, J., Wynne, I. R. & Thomas, C. D. Hybridisation and climate change: Brown argus butterflies in Britain (Polyommatus subgenus Aricia). Insect Conserv. Divers. 4, 192–199 (2011).

    Article  Google Scholar 

  • 61.

    Gutzwiller, F., Dedeine, F., Kaiser, W., Giron, D. & Lopez-Vaamonde, C. Correlation between the green-island phenotype and Wolbachia infections during the evolutionary diversification of Gracillariidae leaf-mining moths. Ecol. Evol. 5, 4049–4062 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Mascarenhas, R. O., Prezotto, L. F., Perondini, A. L. P., Marino, C. L. & Selivon, D. Wolbachia in guilds of Anastrepha fruit flies (Tephritidae) and parasitoid wasps (Braconidae). Genet. Mol. Biol. 39, 600–610 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Sucháčková Bartoňová, A. et al. Recently lost connectivity in the Western Palaearctic steppes: The case of a scarce specialist butterfly. Conserv. Genet. 21, 561–575 (2020).

    Article  Google Scholar 

  • 64.

    Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: The rule and not the exception?. Front. Zool. 9, 1–12 (2012).

    Article  Google Scholar 

  • 65.

    de Lattin, G. Grundriss der Zoogeographie (VEB Gustav Fischer Verlag, Jena, 1967).

    Google Scholar 

  • 66.

    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).

    Article  Google Scholar 

  • 67.

    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467 (2005).

    PubMed  Article  Google Scholar 

  • 69.

    Heiser, M., Dapporto, L. & Schmitt, T. Coupling impoverishment analysis and partitioning of beta diversity allows a comprehensive description of Odonata biogeography in the Western Mediterranean. Org. Divers. Evol. 14, 203–214 (2014).

    Article  Google Scholar 

  • 70.

    Vodă, R. et al. Historical and contemporary factors generate unique butterfly communities on islands. Sci. Rep. 6, 28828 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 71.

    Scalercio, S. et al. How long is 3 km for a butterfly? Ecological constraints and functional traits explain high mitochondrial genetic diversity between Sicily and the Italian Peninsula. J. Anim. Ecol. 89, 2013–2026 (2020).

    PubMed  Article  Google Scholar 

  • 72.

    Descimon, H. & Mallet, J. Bad species. in Ecology and Evolution of European Butterflies (Oxford University Press, Oxford, 2009).

  • 73.

    Habel, J. C., Schmitt, T. & Müller, P. The fourth paradigm pattern of post-glacial range expansion of European terrestrial species: The phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera). J. Biogeogr. 32, 1489–1497 (2005).

    Article  Google Scholar 

  • 74.

    Varga, Z. Das Prinzip der areal-analytischen Methode in der Zoogeographie und die Faunenelement-Einteilung der europäischen Tagschmetterlinge (Lepidoptera: Diurna). Acta Biol. Debrecina 14, 223–285 (1977).

    Google Scholar 

  • 75.

    Schmitt, T. & Zimmermann, M. To hybridize or not to hybridize: What separates two genetic lineages of the Chalk-hill Blue Polyommatus coridon (Lycaenidae, Lepidoptera) along their secondary contact zone throughout eastern Central Europe?. J. Zool. Syst. Evol. Res. 50, 106–115 (2012).

    Article  Google Scholar 

  • 76.

    Janoušek, V. et al. Genome-wide architecture of reproductive isolation in a naturally occurring hybrid zone between Musmusculus musculus and M. m. domesticus. Mol. Ecol. 21, 3032–3047 (2012).

    PubMed  Article  Google Scholar 

  • 77.

    Nürnberger, B., Lohse, K., Fijarczyk, A., Szymura, J. M. & Blaxter, M. L. Para-allopatry in hybridizing fire-bellied toads (Bombinabombina and B. variegata): Inference from transcriptome-wide coalescence analyses. Evolution 70, 1803–1818 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 78.

    Vitali, F. & Schmitt, T. Ecological patterns strongly impact the biogeography of western Palaearctic longhorn beetles (Coleoptera: Cerambycoidea). Org. Divers. Evol. 17, 163–180 (2017).

    Article  Google Scholar 

  • 79.

    Narita, S., Nomura, M., Kato, Y. & Fukatsu, T. Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: Evolutionary and biogeographical implications. Mol. Ecol. 15, 1095–1108 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 80.

    Kageyama, S. et al. Feminizing Wolbachia endosymbiont disrupts maternal sex chromosome inheritance in a butterfly species. Evol. Lett. 1, 232–244 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 81.

    Nosil, P., Harmon, L. J. & Seehausen, O. Ecological explanations for (incomplete) speciation. Trends Ecol. Evol. (Amst.) 24, 145–156 (2009).

    Article  Google Scholar 

  • 82.

    Talavera, G., Lukhtanov, V. A., Rieppel, L., Pierce, N. E. & Vila, R. In the shadow of phylogenetic uncertainty: The recent diversification of Lysandra butterflies through chromosomal change. Mol. Phylogenet. Evol. 69, 469–478 (2013).

    PubMed  Article  Google Scholar 

  • 83.

    Kühne, G., Kosuch, J., Hochkirch, A. & Schmitt, T. Extra-Mediterranean glacial refugia in a Mediterranean faunal element: The phylogeography of the chalk-hill blue Polyommatus coridon (Lepidoptera, Lycaenidae). Sci. Rep. 7, srep43533 (2017).

    ADS  Article  Google Scholar 

  • 84.

    Wiemers, M., Keller, A. & Wolf, M. ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus). BMC Evol. Biol. 9, 300 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 85.

    Duron, O. & Hurst, G. D. Arthropods and inherited bacteria: From counting the symbionts to understanding how symbionts count. BMC Biol. 11, 45 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 86.

    Bailly-Bechet, M. et al. How long does Wolbachia remain on board?. Mol. Biol. Evol. 34, 1183–1193 (2017).

    CAS  PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Scientists as engaged citizens

    New fiber optic temperature sensing approach to keep fusion power plants running