in

A global record of annual terrestrial Human Footprint dataset from 2000 to 2018

  • Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6, 439–447 (2008).

    Article 

    Google Scholar 

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, (2017).

  • Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. Changes in human footprint drive changes in species extinction risk. Nature communications 9, 1–9 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Kreidenweis, U. et al. Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Global change biology 24, 3199–3213 (2018).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment 236, 111510 (2020).

    ADS 
    Article 

    Google Scholar 

  • Mu, H. et al. Evaluation of Light Pollution in Global Protected Areas from 1992 to 2018. Remote Sensing 13, 1849 (2021).

    ADS 
    Article 

    Google Scholar 

  • Wang, L. et al. Mapping population density in China between 1990 and 2010 using remote sensing. Remote sensing of environment 210, 269–281 (2018).

    ADS 
    Article 

    Google Scholar 

  • Raiter, K. G., Possingham, H. P., Prober, S. M. & Hobbs, R. J. Under the radar: mitigating enigmatic ecological impacts. Trends in ecology & evolution 29, 635–644 (2014).

    Article 

    Google Scholar 

  • Nikhil, S. et al. Application of GIS and AHP Method in Forest Fire Risk Zone Mapping: a Study of the Parambikulam Tiger Reserve, Kerala, India. Journal of Geovisualization and Spatial Analysis 5, 1–14 (2021).

    Article 

    Google Scholar 

  • Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Steffen W, et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, (2015).

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature communications 7, 1–11 (2016).

    Article 
    CAS 

    Google Scholar 

  • Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Scientific data 3, 1–10 (2016).

    Article 

    Google Scholar 

  • Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Mu, H. et al. Evaluation of the policy-driven ecological network in the Three-North Shelterbelt region of China. Landscape and Urban Planning 218, 104305 (2022).

    Article 

    Google Scholar 

  • Hoffmann, S., Irl, S. D. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nature communications 10, 1–10 (2019).

    Article 
    CAS 

    Google Scholar 

  • Sanderson, E. W. et al. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. Bioscience 52, 891–904 (2002).

    Article 

    Google Scholar 

  • Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).

    ADS 
    Article 

    Google Scholar 

  • Allan, J. R., Venter, O. & Watson, J. E. Temporally inter-comparable maps of terrestrial wilderness and the Last of the Wild. Scientific data 4, 1–8 (2017).

    Article 

    Google Scholar 

  • Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Yang, R. et al. Cost-effective priorities for the expansion of global terrestrial protected areas: Setting post-2020 global and national targets. Science Advances 6, eabc3436 (2020).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Theobald, D. M. et al. Earth transformed: detailed mapping of global human modification from 1990 to 2017. Earth System Science Data 12, 1953–1972 (2020).

    ADS 
    Article 

    Google Scholar 

  • Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology 25, 811–826 (2019).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nature ecology & evolution 2, 599–610 (2018).

    Article 

    Google Scholar 

  • Wolkovich, E., Cook, B., McLauchlan, K. & Davies, T. Temporal ecology in the Anthropocene. Ecology letters 17, 1365–1379 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. Scientific data 7, 1–9 (2020).

    Article 
    CAS 

    Google Scholar 

  • Luck, G. W., Ricketts, T. H., Daily, G. C. & Imhoff, M. Alleviating spatial conflict between people and biodiversity. Proceedings of the National Academy of Sciences 101, 182–186 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gong, P., Li, X. & Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Science Bulletin 64, 756–763 (2019).

    ADS 
    Article 

    Google Scholar 

  • Hu, T., Yang, J., Li, X. & Gong, P. Mapping urban land use by using landsat images and open social data. Remote Sensing 8, 151 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Li, X. et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environmental Research Letters 15, 094044 (2020).

    ADS 
    Article 

    Google Scholar 

  • Li, X., Zhou, Y., Zhu, Z. & Cao, W. A national dataset of 30 m annual urban extent dynamics (1985–2015) in the conterminous United States. Earth System Science Data 12, 357–371 (2020).

    ADS 
    Article 

    Google Scholar 

  • Zhang, X. et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth System Science Data 12, 1625–1648 (2020).

    ADS 
    Article 

    Google Scholar 

  • Li, X., Gong, P. & Liang, L. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sensing of Environment 166, 78–90 (2015).

    ADS 
    Article 

    Google Scholar 

  • Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Tratalos, J., Fuller, R. A., Warren, P. H., Davies, R. G. & Gaston, K. J. Urban form, biodiversity potential and ecosystem services. Landscape and urban planning 83, 308–317 (2007).

    Article 

    Google Scholar 

  • Fry, J. A. et al. Completion of the 2006 national land cover database for the conterminous United States. PE&RS. Photogrammetric Engineering & Remote Sensing 77, 858–864 (2011).

    Google Scholar 

  • Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C. & Ghosh, T. VIIRS night-time lights. International Journal of Remote Sensing 38, 5860–5879 (2017).

    ADS 
    Article 

    Google Scholar 

  • Zhou, Y., Li, X., Asrar, G. R., Smith, S. J. & Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sensing of Environment 219, 206–220 (2018).

    ADS 
    Article 

    Google Scholar 

  • Li, X. & Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sensing 9, 637 (2017).

    ADS 
    Article 

    Google Scholar 

  • Li, X. & Zhou, Y. Urban mapping using DMSP/OLS stable night-time light: a review. International Journal of Remote Sensing 38, 6030–6046 (2017).

    ADS 
    Article 

    Google Scholar 

  • Cincotta, R. P., Wisnewski, J. & Engelman, R. Human population in the biodiversity hotspots. Nature 404, 990–992 (2000).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • McKee, J. K., Sciulli, P. W., Fooce, C. D. & Waite, T. A. Forecasting global biodiversity threats associated with human population growth. Biological Conservation 115, 161–164 (2004).

    Article 

    Google Scholar 

  • Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets. Big Earth Data 3, 108–139 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Scientific data 4, 1–17 (2017).

    Article 

    Google Scholar 

  • Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biological reviews 88, 912–927 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Zhao, M. et al. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sensing 11, 1971 (2019).

    ADS 
    Article 

    Google Scholar 

  • Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nature Sustainability 3, 281–289 (2020).

    Article 

    Google Scholar 

  • Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nature communications 10, 1–10 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Plummer, S., Lecomte, P. & Doherty, M. The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sensing of Environment 203, 2–8 (2017).

    ADS 
    Article 

    Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global biogeochemical cycles 22, (2008).

  • Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conservation biology 14, 18–30 (2000).

    Article 

    Google Scholar 

  • Paton, D. G., Ciuti, S., Quinn, M. & Boyce, M. S. Hunting exacerbates the response to human disturbance in large herbivores while migrating through a road network. Ecosphere 8, e01841 (2017).

    Article 

    Google Scholar 

  • Center For International Earth Science Information Network –Columbia University, Georgia ITOSUO. Global roads open access data set, version 1 (gROADSv1). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC), (2013).

  • Wolter, C. & Arlinghaus, R. Navigation impacts on freshwater fish assemblages: the ecological relevance of swimming performance. Reviews in Fish Biology and Fisheries 13, 63–89 (2003).

    Article 

    Google Scholar 

  • Wolter, C. Conservation of fish species diversity in navigable waterways. Landscape and Urban Planning 53, 135–144 (2001).

    Article 

    Google Scholar 

  • Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos, Transactions American Geophysical Union 89, 93–94 (2008).

    ADS 
    Article 

    Google Scholar 

  • Mu, H. et al. An annual global terrestrial Human Footprint dataset from 2000 to 2018. figshare https://doi.org/10.6084/m9.figshare.16571064.v5 (2021).

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arino, O. et al. Global land cover map for 2009 (GlobCover 2009). European Space Agency (ESA) & Université catholique de Louvain (UCL), PANGAEA https://doi.org/10.1594/PANGAEA.787668 (2012).

  • Watson, J. E. et al. Catastrophic declines in wilderness areas undermine global environment targets. Current Biology 26, 2929–2934 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Oakleaf, J. R. et al. Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors. Scientific data 6, 1–17 (2019).

    Article 

    Google Scholar 

  • Rehbein, J. A. et al. Renewable energy development threatens many globally important biodiversity areas. Global change biology 26, 3040–3051 (2020).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Punishment institutions selected and sustained through voting and learning

    MIT engineers introduce the Oreometer