in

Assessing assemblage-wide mammal responses to different types of habitat modification in Amazonian forests

  • 1.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478(7369), 378–381. https://doi.org/10.1038/nature10425 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 2.

    Newbold, T. et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. B. 281, 20141371. https://doi.org/10.1098/rspb.2014.1371 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6(11), eaax8574. https://doi.org/10.1126/sciadv.aax8574 (2020).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 4.

    Peres, C. A. et al. Biodiversity conservation in human-modified Amazonian Forest landscapes. Biol. Conserv. 143, 2314–2327. https://doi.org/10.1016/j.biocon.2010.01.021 (2010).

    Article 

    Google Scholar 

  • 5.

    PRODES INPE. Monitoring Deforestation of the Brazilian Amazon Forest by Satellite. TerraBrasilis (inpe.br) (accessed in october 2020, 2020).

  • 6.

    Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. 104, 18555–18560. https://doi.org/10.1073/pnas.0703333104 (2007).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 7.

    Peres, C. A., Barlow, J. & Laurance, W. F. Detecting anthropogenic disturbance in tropical forests. Trends Ecol. Evol. 21, 227–229. https://doi.org/10.1016/j.tree.2006.03.007 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 8.

    Arroyo-Rodríguez, V. et al. Designing optimal human-modified landscapes for forest biodiversity conservation. Ecol. Lett. 23, 1404–1420. https://doi.org/10.1111/ele.13535 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 9.

    Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 1–21. https://doi.org/10.1111/j.1461-0248.2009.01294.x (2009).

    Article 

    Google Scholar 

  • 10.

    Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195. https://doi.org/10.1016/j.agrformet.2014.11.010 (2015).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 11.

    Sambuichi, R. H. et al. Cabruca agroforests in southern Bahia, Brazil: Tree component, management practices and tree species conservation. Biodivers. Conserv. 21, 1055–1077. https://doi.org/10.1007/s10531-012-0240-3 (2012).

    Article 

    Google Scholar 

  • 12.

    Devictor, V., Julliard, R. & Jiguet, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117, 507–514. https://doi.org/10.1111/j.0030-1299.2008.16215.x (2008).

    Article 

    Google Scholar 

  • 13.

    Banks-Leite, C. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345, 1041–1045. https://doi.org/10.1126/science.1255768 (2014).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 14.

    Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163. https://doi.org/10.1111/ecog.01932 (2016).

    Article 

    Google Scholar 

  • 15.

    Paglia, A. P. et al. Annotated checklist of Brazilian mammals. Occas. Pap. Conserv. Int. 6, 1–82 (2012).

    Google Scholar 

  • 16.

    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 17.

    Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 3, e1600946. https://doi.org/10.1126/sciadv.1600946 (2017).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 18.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. https://doi.org/10.1038/nature14324 (2015).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 19.

    Phillips, H. R., Newbold, T. & Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodivers. Conserv. 26, 2251–2270. https://doi.org/10.1007/s10531-017-1356-2 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Teixeira, D. F., Guillera-Arroita, G., Hilário, R. R., Fonseca, C. & Rosalino, L. M. Influence of life-history traits on the occurrence of carnivores within exotic Eucalyptus plantations. Divers. Distrib. 26, 1071–1082. https://doi.org/10.1111/ddi.13114 (2020).

    Article 

    Google Scholar 

  • 21.

    Asner, G. P. et al. Selective logging in the Brazilian Amazon. Science 310, 480–482. https://doi.org/10.1126/science.1118051 (2005).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 22.

    Robinson, J. G. & Redford, K. H. Body size, diet, and population density of neotropical forest mammals. Am. Nat. 128, 665–680. https://doi.org/10.1086/284596 (1986).

    Article 

    Google Scholar 

  • 23.

    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241. https://doi.org/10.1890/05-0112 (2005).

    CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 

  • 24.

    Almeida-Maués, P.C.R. Efeitos antropogênicos sobre a diversidade de mamíferos de médio e grande porte na Amazônia Oriental. PhD. Thesis, Graduate Program in Ecology, Federal University of Pará, Belém, Pará, Brazil (2019).

  • 25.

    Parry, L., Barlow, J. & Peres, C. A. Large-vertebrate assemblages of primary and secondary forests in the Brazilian Amazon. J. Trop. Ecol. 23, 653–662. https://doi.org/10.1017/S0266467407004506 (2007).

    Article 

    Google Scholar 

  • 26.

    Mendes-Oliveira, A. C. et al. Oil palm monoculture induces drastic erosion of an Amazonian forest mammal fauna. PLoS ONE 12, e0187650. https://doi.org/10.1371/journal.pone.0187650 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Coelho, M., Juen, L. & Mendes-Oliveira, A. C. The role of remnants of Amazon savanna for the conservation of Neotropical mammal communities in eucalyptus plantations. Biodivers. Conserv. 23, 3171–3184. https://doi.org/10.1007/s10531-014-0772-9 (2014).

    Article 

    Google Scholar 

  • 28.

    Bicknell, J. E., Struebig, M. J. & Davies, Z. G. Reconciling timber extraction with biodiversity conservation in tropical forests using reduced-impact logging. J. Appl. Ecol. 52, 379–388. https://doi.org/10.1111/1365-2664.12391 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417. https://doi.org/10.1111/j.1523-1739.2009.01338.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • 30.

    Koh, L. P. & Wilcove, D. S. Is oil palm agriculture really destroying tropical biodiversity?. Conserv. Lett. 1, 60–64. https://doi.org/10.1111/j.1755-263X.2008.00011.x (2008).

    Article 

    Google Scholar 

  • 31.

    Putz, F. E. & Pinard, M. A. Reduced-impact logging as a carbon-offset method. Conserv. Biol. 7, 755–757. https://doi.org/10.1046/j.1523-1739.1993.7407551.x (1993).

    Article 

    Google Scholar 

  • 32.

    Pinard, M. A. & Putz, F. E. Retaining forest biomass by reducing logging damage. Biotropica 28, 278–295. https://doi.org/10.2307/2389193 (1996).

    Article 

    Google Scholar 

  • 33.

    Prudente, B. S., Pompeu, P. S., Juen, L. & Montag, L. F. A. Effects of reduced-impact logging on physical habitat and fish assemblages in streams of Eastern Amazonia. Freshw. Biol. 62, 303–316. https://doi.org/10.1111/fwb.12868 (2017).

    Article 

    Google Scholar 

  • 34.

    Kanowski, J., Catterall, C. P. & Wardell-Johnson, G. W. Consequences of broadscale timber plantations for biodiversity in cleared rainforest landscapes of tropical and subtropical Australia. For. Ecol. Manage. 208, 359–372. https://doi.org/10.1016/j.foreco.2005.01.018 (2005).

    Article 

    Google Scholar 

  • 35.

    Correa, F. S., Juen, L., Rodrigues, L. C., Silva-Filho, H. F. & Santos-Costa, M. C. Effects of oil palm plantations on anuran diversity in the eastern Amazon. Anim. Biol. 65, 321–335. https://doi.org/10.1163/15707563-00002481 (2015).

    Article 

    Google Scholar 

  • 36.

    Peres, C. A. & Cunha, A. A. Line-Transect Censuses of Large-Bodied Tropical Forest Vertebrates: A Handbook (Wildlife Conservation Society, 2011).

    Google Scholar 

  • 37.

    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93, 2533–2547. https://doi.org/10.1890/11-1952.1 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 38.

    Oksanen, J. F. et al. vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan (2019).

  • 39.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, 6089–6096. https://doi.org/10.1073/pnas.1704949114 (2017).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Kricher, J. Tropical Ecology 632 (Princeton University Press, 2011).

    Google Scholar 

  • 41.

    Edwards, D. P. et al. Reduced-impact logging and biodiversity conservation: A case study from Borneo. Ecol. Appl. 22, 561–571. https://doi.org/10.1890/11-1362.1 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 42.

    Melo, F. P. L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M. & Tabarelli, M. On the hope for biodiversity friendly tropical landscapes. Trends Ecol. Evol. 28, 462–468. https://doi.org/10.1016/j.tree.2013.01.001 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 43.

    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188. https://doi.org/10.1016/S0169-5347(03)00011-9 (2003).

    Article 

    Google Scholar 

  • 44.

    Almeida-Rocha, J. M., Peres, C. A. & Oliveira, L. C. Primate responses to anthropogenic habitat disturbance: A pantropical meta-analysis. Biol. Conserv. 215, 30–38. https://doi.org/10.1016/j.biocon.2017.08.018 (2017).

    Article 

    Google Scholar 

  • 45.

    Palmeirim, A. F., Vieira, M. V. & Peres, C. A. Herpetofaunal responses to anthropogenic forest habitat modification across the neotropics: Insights from partitioning β-diversity. Biodivers. Conserv. 26, 2877–2891. https://doi.org/10.1007/s10531-017-1394-9 (2017).

    Article 

    Google Scholar 

  • 46.

    Christie, A. P. et al. Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences. Nat. Commun. 11, 6377. https://doi.org/10.1038/s41467-020-20142-y (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 47.

    Whitworth, A. et al. Human disturbance impacts on rainforest mammals are most notable in the canopy, especially for larger-bodied species. Divers. Distrib. 25, 1166–1178. https://doi.org/10.1111/ddi.12930 (2019).

    Article 

    Google Scholar 

  • 48.

    Johns, A. D. & Skorupa, J. P. Responses of rain-forest primates to habitat disturbance: A review. Int. J. Primatol. 8, 157–191. https://doi.org/10.1007/BF02735162 (1987).

    Article 

    Google Scholar 

  • 49.

    Wearn, O. R. et al. Mammalian species abundance across a gradient of tropical land-use intensity: A hierarchical multi-species modelling approach. Biol. Conserv. 212, 162–171. https://doi.org/10.1016/j.biocon.2017.05.007 (2017).

    Article 

    Google Scholar 

  • 50.

    Benchimol, M. & Peres, C. A. Determinants of population persistence and abundance of terrestrial and arboreal vertebrates stranded in tropical forest land-bridge islands. Conserv. Biol. 35(3), 870–883. https://doi.org/10.1111/cobi.13619 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 51.

    Gittleman, J. L. & Harvey, P. H. Carnivore home-range size, metabolic needs and Ecology. Behav. Ecol. Sociobiol. 10(1), 57–63. https://doi.org/10.1007/BF00296396 (1982).

    Article 

    Google Scholar 

  • 52.

    Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 29, 511–520. https://doi.org/10.1016/j.tree.2014.07.003 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 53.

    Mollinari, M. M., Peres, C. A. & Edwards, D. P. Rapid recovery of thermal environment after selective logging in the Amazon. Agric. For. Meteorol. 278, 107637. https://doi.org/10.1016/j.agrformet.2019.107637 (2019).

    Article 
    ADS 

    Google Scholar 

  • 54.

    Azevedo-Ramos, C., de Carvalho, O. & de Amaral, B. D. Short-term effects of reduced-impact logging on eastern Amazon fauna. For. Ecol. Manag. 232, 26–35. https://doi.org/10.1016/j.foreco.2006.05.025 (2006).

    Article 

    Google Scholar 

  • 55.

    Bicknell, J. E. & Peres, C. A. Vertebrate population responses to reduced-impact logging in a neotropical forest. For. Ecol. Manage. 259, 2267–2275. https://doi.org/10.1016/j.foreco.2010.02.027 (2010).

    Article 

    Google Scholar 

  • 56.

    Laufer, J., Michalski, F. & Peres, C. A. Effects of reduced-impact logging on medium and large-bodied forest vertebrates in eastern Amazonia. Biota Neotrop. 15, e20140131. https://doi.org/10.1590/1676-06032015013114 (2015).

    Article 

    Google Scholar 

  • 57.

    Carvalho Jr, E. A. R., Mendonça, E. N., Martins, A. & Haugaasen, T. Effects of illegal logging on Amazonian medium and large-sized terrestrial vertebrates. For. Ecol. Manage. 466, 118105. https://doi.org/10.1016/j.foreco.2020.118105 (2020).

    Article 

    Google Scholar 

  • 58.

    Kuussaari, M. et al. Extinction debt: A challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571. https://doi.org/10.1016/j.tree.2009.04.011 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 59.

    Richardson, V. A. & Peres, C. A. Temporal decay in timber species composition and value in Amazonian logging concessions. PLoS ONE 11, e0159035. https://doi.org/10.1371/journal.pone.0159035 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (University of Chicago Press, 2014).

    Book 

    Google Scholar 

  • 61.

    Acevedo-Charry, O. & Aide, T. M. Recovery of amphibian, reptile, bird and mammal diversity during secondary forest succession in the tropics. Oikos 128, 1065–1078. https://doi.org/10.1111/oik.06252 (2019).

    Article 

    Google Scholar 

  • 62.

    Sodhi, N. S. et al. Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol. Conserv. 143, 2375–2384. https://doi.org/10.1016/j.biocon.2009.12.029 (2010).

    Article 

    Google Scholar 

  • 63.

    Dunn, R. R. Recovery of faunal communities during tropical forest regeneration. Conserv. Biol. 18, 302–309. https://doi.org/10.1111/J.1523-1739.2004.00151.X (2004).

    Article 

    Google Scholar 

  • 64.

    Luskin, M. S. & Potts, M. D. Microclimate and habitat heterogeneity through the oil palm lifecycle. Basic Appl. Ecol. 12, 540–551. https://doi.org/10.1016/j.baae.2011.06.004 (2011).

    Article 

    Google Scholar 

  • 65.

    Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity?. Trends Ecol. Evol. 23(10), 538–545. https://doi.org/10.1016/j.tree.2008.06.012 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 66.

    Martello, F. et al. Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci. Rep. 8, 3266. https://doi.org/10.1038/s41598-018-20823-1 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 67.

    da Rocha, P. L. B. What is the value of eucalyptus monocultures for the biodiversity of the Atlantic Forest? A multitaxa study in southern Bahia, Brazil. J. For. Res. 24, 263–272. https://doi.org/10.1007/s11676-012-0311-z (2013).

    Article 

    Google Scholar 

  • 68.

    Martin, P. S., Gheler-Costa, C., Lopes, P. C., Rosalino, L. M. & Verdade, L. M. Terrestrial non-volant small mammals in agro-silvicultural landscapes of Southeastern Brazil. For. Ecol. Manag. 282, 185–195. https://doi.org/10.1016/j.foreco.2012.07.002 (2012).

    Article 

    Google Scholar 

  • 69.

    Fayle, T. M. et al. Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic Appl. Ecol. 11, 337–345. https://doi.org/10.1016/j.baae.2009.12.009 (2010).

    Article 

    Google Scholar 

  • 70.

    Koh, L. P. Can oil palm plantations be made more hospitable for forest butterflies and birds?. J. Appl. Ecol. 45, 1002–1009. https://doi.org/10.1007/s10531-009-9760-x (2008).

    Article 

    Google Scholar 

  • 71.

    Martins, C. A. & Júnior, A. P. P. Production of biodiesel: Source strategies and efficiency in the Brazilian energy matrix. Energy Sour. Part A Recov. Util. Environ. Eff. 38, 277–285. https://doi.org/10.1080/15567036.2012.716139 (2016).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Peres, C. A. Why we need megareserves in Amazonia. Cons. Biol. 19, 728–733. https://doi.org/10.1111/j.1523-1739.2005.00691.x (2005).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Energizing communities in Africa

    Reducing methane emissions at landfills