in

Effects of decadal climate variability on spatiotemporal distribution of Indo-Pacific yellowfin tuna population

  • Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).

    Article 

    Google Scholar 

  • Muhling, B. A. et al. Potential impact of climate change on the Intra-Americas Sea: Part 2. Implications for Atlantic bluefin tuna and skipjack tuna adult and larval habitats. J. Mar. Syst. 148, 1–13 (2015).

    Article 

    Google Scholar 

  • Erauskin-Extramiana, M. et al. Large-scale distribution of tuna species in a warming ocean. Glob. Change Biol. 25, 2043–2060 (2019).

    ADS 
    Article 

    Google Scholar 

  • Cheung, W. W. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).

    ADS 
    Article 

    Google Scholar 

  • Townhill, B. L., Couce, E., Bell, J., Reeves, S. & Yates, O. Climate change impacts on Atlantic oceanic island tuna fisheries. Front. Mar. Sci. 8, 140 (2021).

    Article 

    Google Scholar 

  • Wu, Y. L., Lan, K. W. & Tian, Y. J. Determining the effect of multiscale climate indices on the global yellowfin tuna (Thunnus albacares) population using a time series analysis. Deep Sea Res. Part II Top. Stud. Oceanogr. 175, 104808 (2020).

    Article 

    Google Scholar 

  • Faillettaz, R., Beaugrand, G., Goberville, E. & Kirby, R. R. Atlantic Multidecadal Oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Sci. Adv. 5(1), eaar6993 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lan, K. W., Evans, K. & Lee, M. A. Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Clim. Change 119, 63–77 (2013).

    ADS 
    Article 

    Google Scholar 

  • Lan, K. W., Chang, Y. J. & Wu, Y. L. Influence of oceanographic and climatic variability on the catch rate of yellowfin tuna (Thunnus albacares) cohorts in the Indian Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 175, 104681 (2019).

    Article 

    Google Scholar 

  • Drinkwater, K. et al. Climate forcing on marine ecosystems. In Marine Ecosystems and Global Change 11–39 (2010).

  • Lan, K. W., Wu, Y. L., Chen, L. C., Naimullah, M. & Lin, T. H. Effects of climate change in marine ecosystems based on the spatiotemporal age structure of top predators: A case study of bigeye tuna in the Pacific Ocean. Front. Mar. Sci. 8, 352 (2021).

    Article 

    Google Scholar 

  • Li, S. et al. The Pacific Decadal Oscillation less predictable under greenhouse warming. Nat. Clim. Chang. 10, 30–34 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Debertin, A. J., Irvine, J. R., Holt, C. A., Oka, G. & Trudel, M. Marine growth patterns of southern British Columbia chum salmon explained by interactions between density-dependent competition and changing climate. Can. J. Fish. Aquat. Sci. 74(7), 1077–1087 (2017).

    Article 

    Google Scholar 

  • Di Lorenzo, E. et al. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett. https://doi.org/10.1029/2007GL032838 (2008).

    Article 

    Google Scholar 

  • Oceanic Fisheries Programme Pacific Community. Western and central Pacific fisheries commission tuna fishery yearbook (2020).

  • IOTC. Report of the Twelfth Session of the Scientific Committee of the Indian Ocean Tuna Commsion. Victoria, Seychelles, 190 (2009).

  • Pecoraro, C. et al. Putting all the pieces together: Integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares). Rev. Fish. Biol. Fish. 27(4), 811–841 (2017).

    Article 

    Google Scholar 

  • Lee, Y. C., Nishida, T. & Mohri, M. Separation of the Taiwanese regular and deep tuna longliners in the Indian Ocean using bigeye tuna catch ratios. Fish. Sci. 71(6), 1256–1263 (2005).

    CAS 
    Article 

    Google Scholar 

  • Marsac, F. Outlook of ocean climate variability in the west tropical Indian Ocean, 1997–2008. Working document for IOTC Indian Ocean Tuna Commission (2008).

  • Lehodey, P., Chai, F. & Hampton, J. Modelling climate-related variability of tuna populations from a coupled ocean–biogeochemical-populations dynamics model. Fish Oceanogr. 12(4–5), 483–494 (2003).

    Article 

    Google Scholar 

  • Torres-Faurrieta, L. K., Dreyfus-León, M. J. & Rivas, D. Recruitment forecasting of yellowfin tuna in the eastern Pacific Ocean with artificial neuronal networks. Ecol. Inform. 36, 106–113 (2016).

    Article 

    Google Scholar 

  • Planque, B. et al. How does fishing alter marine populations and ecosystems sensitivity to climate?. J. Mar. Syst. 79(3–4), 403–417 (2010).

    Article 

    Google Scholar 

  • Perry, R. I. et al. Sensitivity of marine systems to climate and fishing: Concepts, issues and management responses. J. Mar. Syst. 79(3–4), 427–435 (2010).

    Article 

    Google Scholar 

  • Sen Gupta, A. & McNeil, B. Variability and change in the ocean. In The Future of the World’s Climate 141–165 (2012).

  • Welch, H., Pressey, R. L. & Reside, A. E. Using temporally explicit habitat suitability models to assess threats to mobile species and evaluate the effectiveness of marine protected areas. J. Nat. Conserv. 41, 106–115 (2018).

    Article 

    Google Scholar 

  • Shin, A., Yoon, S. C., Lee, S. I., Park, H. W. & Kim, S. The relationship between fishing characteristics of Pacific bluefin tuna (Thunnus orientalis) and ocean conditions around Jeju Island. Fish. Quat. Sci. 21, 1–12 (2018).

    Google Scholar 

  • Monllor-Hurtado, A., Pennino, M. G. & Sanchez-Lizaso, J. L. Shift in tuna catches due to ocean warming. PLoS ONE 12, e0178196 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Arrizabalaga, H. et al. Global habitat preferences of commercially valuable tuna. Deep Sea Res. Part II Top. Stud. Oceanogr. 113, 102–112 (2015).

    ADS 
    Article 

    Google Scholar 

  • Yen, K. W. et al. Using remote-sensing data to detect habitat suitability for yellowfin tuna in the Western and Central Pacific Ocean. Int. J. Remote Sens. 33(23), 7507–7522 (2012).

    Article 

    Google Scholar 

  • Liu, Q. et al. Seasonal and intraseasonal thermocline variability in the central South China Sea. Geophys. Res. Lett. 28(23), 4467–4470 (2001).

    ADS 
    Article 

    Google Scholar 

  • Schaefer, K. M., Fuller, D. W. & Block, B. A. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the northeastern Pacific Ocean, ascertained through archival tag data. Mar. Biol. 152, 503–525 (2007).

    Article 

    Google Scholar 

  • Song, L. M. et al. Environmental preferences of longlining for yellowfin tuna (Thunnus albacares) in the tropical high seas of the Indian Ocean. Fish Oceanogr. 17, 239–253 (2008).

    Article 

    Google Scholar 

  • Bismuto, E. et al. Molecular dynamics simulation of the acidic compact state of apomyoglobin from yellowfin tuna. Proteins 74, 273–290 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Galli, G. L. J., Shiels, H. A. & Brill, R. W. Temperature sensitivity of cardiac function in pelagic fishes with different vertical mobilities: yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus), mahimahi (Coryphaena hippurus), and swordfish (Xiphias gladius). Physiol. Biochem. Zool. 82, 280–290 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Weng, K. C. et al. Habitat and behaviour of yellowfin tuna Thunnus albacares in the Gulf of Mexico determined using pop-up satellite archival tags. J. Fish Biol. 74, 1434–1449 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tseng, C. T. et al. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data. Int. J. Remote Sens. 31, 4543–4558 (2010).

    Article 

    Google Scholar 

  • Báez, J. C., Czerwinski, I. A. & Ramos, M. L. Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean. Fish Oceanogr. 29(6), 572–583 (2020).

    Article 

    Google Scholar 

  • Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1080 (1997).

    ADS 
    Article 

    Google Scholar 

  • Messié, M. & Chavez, F. Global modes of sea surface temperature variability in relation to regional climate indices. J. Clim. 24, 4314–4331 (2011).

    ADS 
    Article 

    Google Scholar 

  • Michael, P. E., Tuck, G. N., Strutton, P. & Hobday, A. Environmental associations with broad-scale Japanese and Taiwanese pelagic longline effort in the southern Indian and Atlantic Oceans. Fish. Oceanogr. 24(5), 478–493 (2015).

    Article 

    Google Scholar 

  • Chavez, F. P., Ryan, J., Lluch-Cota, S. E. & Ñiquen, M. From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. Science 299, 217–221 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chiba, S. et al. Temperature and zooplankton size structure: climate control and basin-scale comparison in the North Pacific. Ecol. Evol. 5(4), 968–978 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Olson, R. J. et al. Decadal diet shift in yellowfin tuna (Thunnus albacares) suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Mar. Ecol.-Prog. Ser. 497, 157–178 (2014).

    ADS 
    Article 

    Google Scholar 

  • Deepa, J. S. et al. The tropical Indian Ocean decadal sea level response to the Pacific decadal oscillation forcing. Clim. Dyn. 52, 5045–5058 (2019).

    Article 

    Google Scholar 

  • Vibhute, A. et al. Decadal variability of tropical Indian Ocean Sea surface temperature and its impact on the Indian summer monsoon. Theor. Appl. Climatol. 141, 551–566 (2020).

    ADS 
    Article 

    Google Scholar 

  • Ummenhofer, C. C., Biastoch, A. & Böning, C. W. Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events. J. Clim. 30, 1739–1751 (2017).

    ADS 
    Article 

    Google Scholar 

  • Latif, M. The ocean’s role in modeling and predicting decadal climate variations. In International Geophysics 645–665 (Academic Press, 2013).

  • Sun, C. et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun. 8, 1–10 (2017).

    Article 
    CAS 

    Google Scholar 

  • Xie, T., Li, J., Chen, K., Zhang, Y. & Sun, C. Origin of Indian Ocean multidecadal climate variability: Role of the North Atlantic Oscillation. Clim. Dyn. 56, 3277–3294 (2021).

    Article 

    Google Scholar 

  • Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ciannelli, L. et al. Climate forcing, food web structure and community dynamics in pelagic marine ecosystems. In Aquatic Food Webs: An Ecosystem Approach 143–169 (Oxford University Press, Oxford, 2005).

  • Enfield, D. B., Mestas-Nuñez, A. M. & Trimble, P. J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 28, 2077–2080 (2001).

    ADS 
    Article 

    Google Scholar 

  • Zuo, H., Balmaseda, M., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea-ice: A description of the system and assessment. Ocean Sci. 15(3), 779–808 (2019).

    ADS 
    Article 

    Google Scholar 

  • Harley, S. J., Myers, R. A. & Dunn, A. Is catch-per-unit-effort proportional to abundance?. Can J. Fish. Aquat. Sci. 58, 1760–1772 (2001).

    Article 

    Google Scholar 

  • Guyomard, D., Desruisseaux, M., Poisson, F., Taquet, M., Petit, M. GAM analysis of operational and environmental factors affecting swordfish (Xiphias gladius) catch and CPUE of the Reunion Island longline fishery, in the South Western Indian Ocean. IOTC-2004-WPB-08, 38 (2004).

  • Su, N. J., Sun, C. L., Punt, A. E., Yeh, S. Z. & DiNardo, G. Modelling the impacts of environmental variation on the distribution of blue marlin, Makaira nigricans, in the Pacific Ocean. ICES J. Mar. Sci. 68, 1072–1080 (2011).

    Article 

    Google Scholar 

  • Bonett, D. G. & Wright, T. A. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65(1), 23–28 (2000).

    MATH 
    Article 

    Google Scholar 

  • Weaver, B. & Koopman, R. An SPSS macro to compute confidence intervals for Pearson’s correlation. Quant. Methods Psychol. 10(1), 29–39 (2014).

    Article 

    Google Scholar 

  • Naimullah, M. et al. Effect of the El Niño-Southern Oscillation (ENSO) cycle on the catches and habitat patterns of three swimming crabs in the Taiwan Strait. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.763543 (2021).

    Article 

    Google Scholar 

  • Chen, X. J., Li, G., Feng, B. & Tian, S. Q. Habitat suitability index of Chub mackerel (Scomber japonicus) from July to September in the East China Sea. J. Oceanogr. 65, 93–102 (2009).

    Article 

    Google Scholar 

  • Urich, D. L. & Graham, J. P. Applying habitat evaluation procedures (HEP) to wildlife area planning in Missouri. Wildl. Soc. Bull. 11(3), 215–222 (1983).

    Google Scholar 

  • Chen, X. J., Tian, S. Q., Chen, Y. & Liu, B. L. A modeling approach to identify optimal habitat and suitable fishing grounds for neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Fish. Bull. 108, 1–14 (2010).

    Google Scholar 

  • Tian, S. Q., Chen, X. J., Chen, Y., Xu, L. X. & Dai, X. J. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean. Fish Res. 95, 181–188 (2009).

    Article 

    Google Scholar 

  • Rouyer, T., Sadykov, A., Ohlberger, J. & Stenseth, N. C. Does increasing mortality change the response of fish populations to environmental fluctuations?. Ecol. Lett. 15, 658–665 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys. 11, 561–566 (2004).

    ADS 
    Article 

    Google Scholar 

  • Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Amer. Meteorol. Soc. 79, 61–78 (1998).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A new method boosts wind farms’ energy output, without new equipment

    The overlooked role of a biotin precursor for marine bacteria – desthiobiotin as an escape route for biotin auxotrophy