Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).
Google Scholar
Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).
Google Scholar
Muhling, B. A. et al. Potential impact of climate change on the Intra-Americas Sea: Part 2. Implications for Atlantic bluefin tuna and skipjack tuna adult and larval habitats. J. Mar. Syst. 148, 1–13 (2015).
Google Scholar
Erauskin-Extramiana, M. et al. Large-scale distribution of tuna species in a warming ocean. Glob. Change Biol. 25, 2043–2060 (2019).
Google Scholar
Cheung, W. W. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).
Google Scholar
Townhill, B. L., Couce, E., Bell, J., Reeves, S. & Yates, O. Climate change impacts on Atlantic oceanic island tuna fisheries. Front. Mar. Sci. 8, 140 (2021).
Google Scholar
Wu, Y. L., Lan, K. W. & Tian, Y. J. Determining the effect of multiscale climate indices on the global yellowfin tuna (Thunnus albacares) population using a time series analysis. Deep Sea Res. Part II Top. Stud. Oceanogr. 175, 104808 (2020).
Google Scholar
Faillettaz, R., Beaugrand, G., Goberville, E. & Kirby, R. R. Atlantic Multidecadal Oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Sci. Adv. 5(1), eaar6993 (2019).
Google Scholar
Lan, K. W., Evans, K. & Lee, M. A. Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Clim. Change 119, 63–77 (2013).
Google Scholar
Lan, K. W., Chang, Y. J. & Wu, Y. L. Influence of oceanographic and climatic variability on the catch rate of yellowfin tuna (Thunnus albacares) cohorts in the Indian Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 175, 104681 (2019).
Google Scholar
Drinkwater, K. et al. Climate forcing on marine ecosystems. In Marine Ecosystems and Global Change 11–39 (2010).
Lan, K. W., Wu, Y. L., Chen, L. C., Naimullah, M. & Lin, T. H. Effects of climate change in marine ecosystems based on the spatiotemporal age structure of top predators: A case study of bigeye tuna in the Pacific Ocean. Front. Mar. Sci. 8, 352 (2021).
Google Scholar
Li, S. et al. The Pacific Decadal Oscillation less predictable under greenhouse warming. Nat. Clim. Chang. 10, 30–34 (2020).
Google Scholar
Debertin, A. J., Irvine, J. R., Holt, C. A., Oka, G. & Trudel, M. Marine growth patterns of southern British Columbia chum salmon explained by interactions between density-dependent competition and changing climate. Can. J. Fish. Aquat. Sci. 74(7), 1077–1087 (2017).
Google Scholar
Di Lorenzo, E. et al. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett. https://doi.org/10.1029/2007GL032838 (2008).
Google Scholar
Oceanic Fisheries Programme Pacific Community. Western and central Pacific fisheries commission tuna fishery yearbook (2020).
IOTC. Report of the Twelfth Session of the Scientific Committee of the Indian Ocean Tuna Commsion. Victoria, Seychelles, 190 (2009).
Pecoraro, C. et al. Putting all the pieces together: Integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares). Rev. Fish. Biol. Fish. 27(4), 811–841 (2017).
Google Scholar
Lee, Y. C., Nishida, T. & Mohri, M. Separation of the Taiwanese regular and deep tuna longliners in the Indian Ocean using bigeye tuna catch ratios. Fish. Sci. 71(6), 1256–1263 (2005).
Google Scholar
Marsac, F. Outlook of ocean climate variability in the west tropical Indian Ocean, 1997–2008. Working document for IOTC Indian Ocean Tuna Commission (2008).
Lehodey, P., Chai, F. & Hampton, J. Modelling climate-related variability of tuna populations from a coupled ocean–biogeochemical-populations dynamics model. Fish Oceanogr. 12(4–5), 483–494 (2003).
Google Scholar
Torres-Faurrieta, L. K., Dreyfus-León, M. J. & Rivas, D. Recruitment forecasting of yellowfin tuna in the eastern Pacific Ocean with artificial neuronal networks. Ecol. Inform. 36, 106–113 (2016).
Google Scholar
Planque, B. et al. How does fishing alter marine populations and ecosystems sensitivity to climate?. J. Mar. Syst. 79(3–4), 403–417 (2010).
Google Scholar
Perry, R. I. et al. Sensitivity of marine systems to climate and fishing: Concepts, issues and management responses. J. Mar. Syst. 79(3–4), 427–435 (2010).
Google Scholar
Sen Gupta, A. & McNeil, B. Variability and change in the ocean. In The Future of the World’s Climate 141–165 (2012).
Welch, H., Pressey, R. L. & Reside, A. E. Using temporally explicit habitat suitability models to assess threats to mobile species and evaluate the effectiveness of marine protected areas. J. Nat. Conserv. 41, 106–115 (2018).
Google Scholar
Shin, A., Yoon, S. C., Lee, S. I., Park, H. W. & Kim, S. The relationship between fishing characteristics of Pacific bluefin tuna (Thunnus orientalis) and ocean conditions around Jeju Island. Fish. Quat. Sci. 21, 1–12 (2018).
Monllor-Hurtado, A., Pennino, M. G. & Sanchez-Lizaso, J. L. Shift in tuna catches due to ocean warming. PLoS ONE 12, e0178196 (2017).
Google Scholar
Arrizabalaga, H. et al. Global habitat preferences of commercially valuable tuna. Deep Sea Res. Part II Top. Stud. Oceanogr. 113, 102–112 (2015).
Google Scholar
Yen, K. W. et al. Using remote-sensing data to detect habitat suitability for yellowfin tuna in the Western and Central Pacific Ocean. Int. J. Remote Sens. 33(23), 7507–7522 (2012).
Google Scholar
Liu, Q. et al. Seasonal and intraseasonal thermocline variability in the central South China Sea. Geophys. Res. Lett. 28(23), 4467–4470 (2001).
Google Scholar
Schaefer, K. M., Fuller, D. W. & Block, B. A. Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the northeastern Pacific Ocean, ascertained through archival tag data. Mar. Biol. 152, 503–525 (2007).
Google Scholar
Song, L. M. et al. Environmental preferences of longlining for yellowfin tuna (Thunnus albacares) in the tropical high seas of the Indian Ocean. Fish Oceanogr. 17, 239–253 (2008).
Google Scholar
Bismuto, E. et al. Molecular dynamics simulation of the acidic compact state of apomyoglobin from yellowfin tuna. Proteins 74, 273–290 (2009).
Google Scholar
Galli, G. L. J., Shiels, H. A. & Brill, R. W. Temperature sensitivity of cardiac function in pelagic fishes with different vertical mobilities: yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus), mahimahi (Coryphaena hippurus), and swordfish (Xiphias gladius). Physiol. Biochem. Zool. 82, 280–290 (2009).
Google Scholar
Weng, K. C. et al. Habitat and behaviour of yellowfin tuna Thunnus albacares in the Gulf of Mexico determined using pop-up satellite archival tags. J. Fish Biol. 74, 1434–1449 (2009).
Google Scholar
Tseng, C. T. et al. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data. Int. J. Remote Sens. 31, 4543–4558 (2010).
Google Scholar
Báez, J. C., Czerwinski, I. A. & Ramos, M. L. Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean. Fish Oceanogr. 29(6), 572–583 (2020).
Google Scholar
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1080 (1997).
Google Scholar
Messié, M. & Chavez, F. Global modes of sea surface temperature variability in relation to regional climate indices. J. Clim. 24, 4314–4331 (2011).
Google Scholar
Michael, P. E., Tuck, G. N., Strutton, P. & Hobday, A. Environmental associations with broad-scale Japanese and Taiwanese pelagic longline effort in the southern Indian and Atlantic Oceans. Fish. Oceanogr. 24(5), 478–493 (2015).
Google Scholar
Chavez, F. P., Ryan, J., Lluch-Cota, S. E. & Ñiquen, M. From anchovies to sardines and back: Multidecadal change in the Pacific Ocean. Science 299, 217–221 (2003).
Google Scholar
Chiba, S. et al. Temperature and zooplankton size structure: climate control and basin-scale comparison in the North Pacific. Ecol. Evol. 5(4), 968–978 (2015).
Google Scholar
Olson, R. J. et al. Decadal diet shift in yellowfin tuna (Thunnus albacares) suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Mar. Ecol.-Prog. Ser. 497, 157–178 (2014).
Google Scholar
Deepa, J. S. et al. The tropical Indian Ocean decadal sea level response to the Pacific decadal oscillation forcing. Clim. Dyn. 52, 5045–5058 (2019).
Google Scholar
Vibhute, A. et al. Decadal variability of tropical Indian Ocean Sea surface temperature and its impact on the Indian summer monsoon. Theor. Appl. Climatol. 141, 551–566 (2020).
Google Scholar
Ummenhofer, C. C., Biastoch, A. & Böning, C. W. Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events. J. Clim. 30, 1739–1751 (2017).
Google Scholar
Latif, M. The ocean’s role in modeling and predicting decadal climate variations. In International Geophysics 645–665 (Academic Press, 2013).
Sun, C. et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun. 8, 1–10 (2017).
Google Scholar
Xie, T., Li, J., Chen, K., Zhang, Y. & Sun, C. Origin of Indian Ocean multidecadal climate variability: Role of the North Atlantic Oscillation. Clim. Dyn. 56, 3277–3294 (2021).
Google Scholar
Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).
Google Scholar
Ciannelli, L. et al. Climate forcing, food web structure and community dynamics in pelagic marine ecosystems. In Aquatic Food Webs: An Ecosystem Approach 143–169 (Oxford University Press, Oxford, 2005).
Enfield, D. B., Mestas-Nuñez, A. M. & Trimble, P. J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 28, 2077–2080 (2001).
Google Scholar
Zuo, H., Balmaseda, M., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea-ice: A description of the system and assessment. Ocean Sci. 15(3), 779–808 (2019).
Google Scholar
Harley, S. J., Myers, R. A. & Dunn, A. Is catch-per-unit-effort proportional to abundance?. Can J. Fish. Aquat. Sci. 58, 1760–1772 (2001).
Google Scholar
Guyomard, D., Desruisseaux, M., Poisson, F., Taquet, M., Petit, M. GAM analysis of operational and environmental factors affecting swordfish (Xiphias gladius) catch and CPUE of the Reunion Island longline fishery, in the South Western Indian Ocean. IOTC-2004-WPB-08, 38 (2004).
Su, N. J., Sun, C. L., Punt, A. E., Yeh, S. Z. & DiNardo, G. Modelling the impacts of environmental variation on the distribution of blue marlin, Makaira nigricans, in the Pacific Ocean. ICES J. Mar. Sci. 68, 1072–1080 (2011).
Google Scholar
Bonett, D. G. & Wright, T. A. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65(1), 23–28 (2000).
Google Scholar
Weaver, B. & Koopman, R. An SPSS macro to compute confidence intervals for Pearson’s correlation. Quant. Methods Psychol. 10(1), 29–39 (2014).
Google Scholar
Naimullah, M. et al. Effect of the El Niño-Southern Oscillation (ENSO) cycle on the catches and habitat patterns of three swimming crabs in the Taiwan Strait. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.763543 (2021).
Google Scholar
Chen, X. J., Li, G., Feng, B. & Tian, S. Q. Habitat suitability index of Chub mackerel (Scomber japonicus) from July to September in the East China Sea. J. Oceanogr. 65, 93–102 (2009).
Google Scholar
Urich, D. L. & Graham, J. P. Applying habitat evaluation procedures (HEP) to wildlife area planning in Missouri. Wildl. Soc. Bull. 11(3), 215–222 (1983).
Chen, X. J., Tian, S. Q., Chen, Y. & Liu, B. L. A modeling approach to identify optimal habitat and suitable fishing grounds for neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Fish. Bull. 108, 1–14 (2010).
Tian, S. Q., Chen, X. J., Chen, Y., Xu, L. X. & Dai, X. J. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean. Fish Res. 95, 181–188 (2009).
Google Scholar
Rouyer, T., Sadykov, A., Ohlberger, J. & Stenseth, N. C. Does increasing mortality change the response of fish populations to environmental fluctuations?. Ecol. Lett. 15, 658–665 (2012).
Google Scholar
Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys. 11, 561–566 (2004).
Google Scholar
Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Amer. Meteorol. Soc. 79, 61–78 (1998).
Google Scholar
Source: Ecology - nature.com