Arora, V. K. et al. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. https://doi.org/10.1029/2010GL046270 (2011).
Google Scholar
Tutak, M. & Brodny, J. Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective. J. Clean. Prod. 345, 131076 (2022).
Google Scholar
Acheampong, A. O. & Boateng, E. B. Modelling carbon emission intensity: Application of artificial neural network. J. Clean. Prod. 225, 833–856 (2019).
Google Scholar
Zhou, L. A. Governing China’s local officials: An analysis of promotion tournament model. Econ. Res. J. 07, 36–50 (2007) (in Chinese).
Luo, Z. & Qi, B. The effects of environmental regulation on industrial transfer and upgrading and banking synergetic development—Evidence from water pollution control in the Yangtze River Basin. Econ. Res. J. 56(02), 174–189 (2021).
Blumstein, C., Krieg, B., Schipper, L. & York, C. Overcoming social and institutional barriers to energy conservation. Energy 5(4), 355–371 (1980).
Google Scholar
Zhang, L. Energy conservation and emission reduction: An inevitable choice of China’s energy strategy. Sustain. Energy 6, 21–30 (2016).
Google Scholar
Bhuiyan, M. A. H., Siwar, C., Ismail, S. M. & Islam, R. The role of government for ecotourism development: Focusing on east coast economic region. J. Soc. Sci. 7(4), 557 (2011).
Fan, G., Su, M. & Cao, J. An economic analysis of consumption and carbon emission responsibility. Econ. Res. J. 45(01), 4–14 (2010) (in Chinese).
Xie, J. G. & Jiang, P. S. Embodied energy in international trade of China: Calculation and decomposition. China Econ. Q. 13(04), 1365–1392 (2014) (in Chinese).
Wu, J., Cui, C., Mei, X., Xu, Q. & Zhang, P. Migration of manufacturing industries and transfer of carbon emissions embodied in trade: Empirical evidence from China and Thailand. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-14674-z (2021).
Google Scholar
Porter, M. E. & Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 9(4), 97–118 (1995).
Google Scholar
Zhang, X. P. & Cheng, X. M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 68(10), 2706–2712 (2009).
Google Scholar
Wang, B. & Liu, G. T. Energy conservation, emission reduction and green economic growth in China: From the perspective of total factor productivity. China Ind. Econ. 05, 57–69 (2015) (in Chinese).
Cheng, Y. Q., Wang, Z. Y., Zhang, S. Z., Ye, X. Y. & Jiang, H. M. Spatial econometric analysis of carbon emission intensity and its driving factors from energy consumption in China. Acta Geogr. Sin. 68(10), 1418–1431 (2013) (in Chinese).
Peng, X. & Cui, H. R. Research on the effects of energy structure adjustment in China on Carbon Intensity. J. Dalian Univ. Technol. (Soc. Sci. Ed.) 37(01), 11–16 (2016) (in Chinese).
Xiao, T. & Liu, H. Empirical research on industrial structure adjustment and energy conservation and emission reduction. Economist 09, 58–68 (2014) (in Chinese).
Sheng, P., He, Y. & Guo, X. The impact of urbanization on energy consumption and efficiency. Energy Environ. 28(7), 673–686 (2017).
Google Scholar
Sun, H., Samuel, C. A., Amissah, J. C. K., Taghizadeh-Hesary, F. & Mensah, I. A. Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries. Energy 212, 118637 (2020).
Google Scholar
He, J. K. Economic analysis and effectiveness evaluation on China’s CO2 emission mitigation target. Stud. Sci. Sci. 01, 9–17 (2011) (in Chinese).
Meng, W. et al. Study on the developmental strategy of the energy saving and environmental protection industry in China. Strat. Study CAE 18(04), 1–8 (2016) (in Chinese).
He, J., Wang, M. M., Zhang, Z. L., Li, M. & Shi, H. X. Equal attention should be paid to boyh construction and operation of buildings for energy efficiency and emission reduction: Findings from current data on resource and environment loads in China’s building industry. Sci. Technol. Rev. 36(05), 8–13 (2018) (in Chinese).
Xie, C. X. & Gao, Y. B. Research on innovative development path of energy conservation and emission reduction from the perspective of low carbon economy. China Resour. Compr. Util. 37(12), 92–94 (2019) (in Chinese).
Dong, J. F., Deng, C., Wang, X. M. & Zhang, X. L. Multilevel index decomposition of energy-related carbon emissions and their decoupling from economic growth in Northwest China. Energies 9(9), 680 (2016).
Google Scholar
Duan, Y. Q. & Xu, S. L. Command-based environmental regulation and heavy polluters’ investment: incentive or disincentive? A quasi-Natural experiment based on the new environmental protection law. J. Financ. Dev. Res. 07, 54–61 (2021) (in Chinese).
Cai, W. & Xu, F. The impact of the new environmental protection law on eco-innovation: Evidence from green patent data of Chinese listed companies. Environ. Sci. Pollut. Res. 29(7), 10047–10062 (2022).
Google Scholar
Ning, Y. et al. Energy conservation and emission reduction path selection in China: A simulation based on bi-level multi-objective optimization model. Energy Policy 137, 111116 (2020).
Google Scholar
Hughes, S., Giest, S. & Tozer, L. Accountability and data-driven urban climate governance. Nat. Clim. Change 10(12), 1085–1090 (2020).
Google Scholar
Feng, L., Chen, Z. & Chen, H. Does the central environmental protection inspectorate accountability system improve environmental quality?. Sustainability 14(11), 6575 (2022).
Google Scholar
Ulucak, R. How do environmental technologies affect green growth? Evidence from BRICS economies. Sci. Total Environ. 712, 136504 (2020).
Google Scholar
Shahbaz, M., Raghutla, C., Chittedi, K. R., Jiao, Z. & Vo, X. V. The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index. Energy 207, 118162 (2020).
Google Scholar
Yang, Y. & Niu, X. Impact of the new “Environmental Protection Law” on the efficiency of listed companies in heavily polluting industries in China: Based on the research perspective of “Porter Hypothesis”. Manag. Rev. 33(10), 55–69 (2021).
Wong, C. W., Wong, C. Y., Boon-Itt, S. & Tang, A. K. Strategies for building environmental transparency and accountability. Sustainability 13(16), 9116 (2021).
Google Scholar
Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524(7565), 335–338 (2015).
Google Scholar
Litman, T. Comprehensive evaluation of energy conservation and emission reduction policies. Transp. Res. Part A Policy Pract. 47, 153–166 (2013).
Google Scholar
Zhou, P., Ang, B. W. & Han, J. Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 32(1), 194–201 (2010).
Google Scholar
Steg, L. Promoting household energy conservation. Energy Policy 36(12), 4449–4453 (2008).
Google Scholar
Yang, Q. & Liu, H. J. Regional difference decomposition and influence factors of China’s carbon dioxide emissions. J. Quant. Tech. Econ. 29(05), 36–49 (2012) (in Chinese).
Yao, L. J. & Sun, C. Y. Italy’s low carbon economic development policy. Sci. Technol. Ind. China 11, 58–60 (2007) (in Chinese).
Li, L. et al. Energy conservation and emission reduction policies for the electric power industry in China. Energy Policy 39(6), 3669–3679 (2011).
Google Scholar
Dong, F. et al. Drivers of carbon emission intensity change in China. Resour. Conserv. Recycl. 129, 187–201 (2018).
Google Scholar
Li, X., Hu, Z., Cao, J. & Xu, X. The impact of environmental accountability on air pollution: A public attention perspective. Energy Policy 161, 112733 (2022).
Google Scholar
Ehrlich, P. R. & Holdren, J. P. Impact of Population Growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive. Science 171(3977), 1212–1217 (1971).
Google Scholar
York, R., Rosa, E. A. & Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 46(3), 351–365 (2003).
Google Scholar
Shao, S., Yang, L. L. & Cao, J. H. Study on influencing of CO2 emissions from industrial energy consumption: An empirical analysis based on STIRPAT model and industrial sectors’ dynamic panel data in Shanghai. J. Finance Econ. 36(11), 16–27 (2010) (in Chinese).
Tseng, S. W. Analysis of energy-related carbon emissions in Inner Mongolia, China. Sustainability 11(24), 7008 (2019).
Google Scholar
Lin, B. & Ouyang, X. Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry. Energy 68, 688–697 (2014).
Google Scholar
Wang, D., He, W. & Shi, R. How to achieve the dual-control targets of China’s CO2 emission reduction in 2030? Future trends and prospective decomposition. J. Clean. Prod. 213, 1251–1263 (2019).
Google Scholar
Card, D., & Krueger, A. B. Minimum wages and employment: A case study of the fast food industry in New Jersey and Pennsylvania (1993).
Abadie, A. & Gardeazabal, J. The economic costs of conflict: A case study of the Basque Country. Am. Econ. Rev. 93(1), 113–132 (2003).
Google Scholar
Kaul, A., Klößner, S., Pfeifer, G. & Schieler, M. Standard synthetic control methods: The case of using all preintervention outcomes together with covariates. J. Bus. Econ. Stat. 40(3), 1362–1376 (2022).
Google Scholar
Lin, B. Q. & Li, J. L. Transformation of China’s energy structure under environmental governance constraints: A peak value analysis of coal and carbon dioxide. Soc. Sci. China 09, 84–107 (2015) (in Chinese).
Long, X., Naminse, E. Y., Du, J. & Zhuang, J. Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. Renew. Sustain. Energy Rev. 52, 680–688 (2015).
Google Scholar
Zhang, W., Zhu, Q. G. & Gao, H. Upgrading of industrial structure, optimizing of energy structure, and low carbon development of industrial system. Econ. Res. J. 51(12), 62–75 (2016) (in Chinese).
Wen, Z., Zhang, L., Hou, J. & Liu, H. Mediating effect test procedure and it application. Acta Psychol. Sin. 36(5), 614–620 (2004).
He, Y., Yu, W. L. & Yang, M. Z. CEOs with rich career experience, corporate risk-taking and the value of enterprises. China Ind. Econ. 09, 155–173 (2019) (in Chinese).
Zhou, D. Q., Wang, Q., Su, B., Zhou, P. & Yao, L. X. Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis. Appl. Energy 166, 201–209 (2016).
Google Scholar
Waheed, R., Sarwar, S. & Wei, C. The survey of economic growth, energy consumption and carbon emission. Energy Rep. 5, 1103–1115 (2019).
Google Scholar
Yang, Y., Zhou, Y., Poon, J. & He, Z. China’s carbon dioxide emission and driving factors: A spatial analysis. J. Clean. Prod. 211, 640–651 (2019).
Google Scholar
Apergis, N. & Payne, J. E. Coal consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy 38(3), 1353–1359 (2010).
Google Scholar
Mujtaba, A., Jena, P. K., Bekun, F. V. & Sahu, P. K. Symmetric and asymmetric impact of economic growth, capital formation, renewable and non-renewable energy consumption on environment in OECD countries. Renew. Sustain. Energy Rev. 160, 112300 (2022).
Google Scholar
Wolde-Rufael, Y. Coal consumption and economic growth revisited. Appl. Energy 87(1), 160–167 (2010).
Google Scholar
Source: Ecology - nature.com