in

Factors determining the dorsal coloration pattern of aposematic salamanders

  • Dobzhansky, T. Geographical variation in lady-beetles. Am. Nat. 67, 97–126 (1933).

    Article 

    Google Scholar 

  • Jablonski, N. G. & Chaplin, G. Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. 107, 8962–8968 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wallace, A. R. The colors of animals and plants. Am. Nat. 11, 641–662. https://doi.org/10.1086/271979 (1877).

    Article 

    Google Scholar 

  • Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).

    Article 

    Google Scholar 

  • Branham, M. A. & Wenzel, J. W. The origin of photic behavior and the evolution of sexual communication in fireflies (Coleoptera: Lampyridae). Cladistics 19, 1–22. https://doi.org/10.1016/s0748-3007(02)00131-7 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Maan, M. E. & Cummings, M. E. Female preferences for aposematic signal components in a polymorphic poison frog. Evolution 62, 2334–2345. https://doi.org/10.1111/j.1558-5646.2008.00454.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1890).

    Google Scholar 

  • Ruxton, G. D., Sherratt, T. N. & Michael, P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry (Oxford University Press, 2004).

    Book 

    Google Scholar 

  • Mappes, J., Marples, N. & Endler, J. A. The complex business of survival by aposematism. Trends Ecol. Evol. 20, 598–603 (2005).

    Article 

    Google Scholar 

  • Joron, M. & Mallet, J. L. Diversity in mimicry: paradox or paradigm?. Trends Ecol. Evol. 13, 461–466 (1998).

    CAS 
    Article 

    Google Scholar 

  • Summers, R. W. et al. An experimental study of the effects of predation on the breeding productivity of capercaillie and black grouse. J. Appl. Ecol. 41, 513–525 (2004).

    Article 

    Google Scholar 

  • Nokelainen, O., Hegna, R. H., Reudler, J. H., Lindstedt, C. & Mappes, J. Trade-off between warning signal efficacy and mating success in the wood tiger moth. Proc. R. Soc. B Biol. Sci. 279, 257–265 (2012).

    Article 

    Google Scholar 

  • Ronka, K. et al. Geographic mosaic of selection by avian predators on hindwing warning colour in a polymorphic aposematic moth. Ecol. Lett. 23, 1654–1663. https://doi.org/10.1111/ele.13597 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Abram, P. K. et al. An insect with selective control of egg coloration. Curr. Biol. 25, 2007–2011. https://doi.org/10.1016/j.cub.2015.06.010 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Briolat, E. S. et al. Diversity in warning coloration: selective paradox or the norm?. Biol. Rev. 94, 388–414. https://doi.org/10.1111/brv.12460 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Frost-Mason, S. K. & Mason, K. A. What insights into vertebrate pigmentation has the axolotl model system provided?. Int. J. Dev. Biol. 40, 685–693 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Stückler, S., Cloer, S., Hödl, W. & Preininger, D. Carotenoid intake during early life mediates ontogenetic colour shifts and dynamic colour change during adulthood. Anim. Behav. 187, 121–135. https://doi.org/10.1016/j.anbehav.2022.03.007 (2022).

    Article 

    Google Scholar 

  • Benito, M. M., Gonzalez-Solis, J. & Becker, P. H. Carotenoid supplementation and sex-specific trade-offs between colouration and condition in common tern chicks. J. Comp. Physiol. B 181, 539–549. https://doi.org/10.1007/s00360-010-0537-z (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stuckert, A. M. M. et al. Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evol. Biol. 19, 15. https://doi.org/10.1186/s12862-019-1410-7 (2019).

    Article 

    Google Scholar 

  • Ohsaki, N. A common mechanism explaining the evolution of female-limited and both-sex Batesian mimicry in butterflies. J. Anim. Ecol. 74, 728–734 (2005).

    Article 

    Google Scholar 

  • Grill, C. P. & Moore, A. J. Effects of a larval antipredator response and larval diet on adult phenotype in an aposematic ladybird beetle. Oecologia 114, 274–282 (1998).

    ADS 
    Article 

    Google Scholar 

  • Friman, V. P., Lindstedt, C., Hiltunen, T., Laakso, J. & Mappes, J. Predation on multiple trophic levels shapes the evolution of pathogen virulence. PLoS ONE 4, e6761 (2009).

    ADS 
    Article 

    Google Scholar 

  • Rojas, B. Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns. Biol. Rev. 92, 1059–1080. https://doi.org/10.1111/brv.12269 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Hegna, R. H., Saporito, R. A. & Donnelly, M. A. Not all colors are equal: predation and color polytypism in the aposematic poison frog Oophaga pumilio. Evol. Ecol. 27, 831–845 (2013).

    Article 

    Google Scholar 

  • Pizzigalli, C. et al. Eco-geographical determinants of the evolution of ornamentation in vipers. Biol. J. Linnean Soc. 130, 345–358 (2020).

    Article 

    Google Scholar 

  • Nielsen, M. E. & Mappes, J. Out in the open: behavior’s effect on predation risk and thermoregulation by aposematic caterpillars. Behav. Ecol. 31, 1031–1039 (2020).

    Article 

    Google Scholar 

  • Lindstedt, C., Suisto, K., Burdfield-Steel, E., Winters, A. E. & Mappes, J. Defense against predators incurs high reproductive costs for the aposematic moth Arctia plantaginis. Behav. Ecol. 31, 844–850. https://doi.org/10.1093/beheco/araa033 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Freeborn, L. R. The Genetic, Cellular, and Evolutionary Basis of Skin Coloration in the Highly Polymorphic Poison Frog, Oophaga pumilio (University of Pittsburgh, 2021).

    Google Scholar 

  • Garcia, T. S., Straus, R. & Sih, A. Temperature and ontogenetic effects on color change in the larval salamander species Ambystoma barbouri and Ambystoma texanum. Can. J. Zool. 81, 710–715. https://doi.org/10.1139/z03-036 (2003).

    Article 

    Google Scholar 

  • Caspers, B. A. et al. Developmental costs of yellow colouration in fire salamanders and experiments to test the efficiency of yellow as a warning colouration. Amphibia-Reptilia 41, 373–385. https://doi.org/10.1163/15685381-bja10006 (2020).

    Article 

    Google Scholar 

  • Wells, K. D. The Ecology and Behaviour of Amphibians (The University of Chicago Press, 2007).

    Book 

    Google Scholar 

  • Balogova, M., Kyselova, M. & Uhrin, M. Changes in dorsal spot pattern in adult Salamandra salamandra (LINNAEUS, 1758). Herpetozoa 28, 167–171 (2016).

    Google Scholar 

  • Brejcha, J. et al. Variability of colour pattern and genetic diversity of Salamandra salamandra (Caudata: Salamandridae) in the Czech Republic. J. Vertebr. Biol. https://doi.org/10.25225/jvb.21016 (2021).

    Article 

    Google Scholar 

  • Romeo, G., Giovine, G., Ficetola, G. F. & Manenti, R. Development of the fire salamander larvae at the altitudinal limit in Lombardy (north-western Italy): effect of two cohorts occurrence on intraspecific aggression. North-West J. Zool. 11, 234–240 (2015).

    Google Scholar 

  • Manenti, R. & Ficetola, G. F. Salamanders breeding in subterranean habitats: local adaptations or behavioural plasticity?. J. Zool. 289, 182–188. https://doi.org/10.1111/j.1469-7998.2012.00976.x (2013).

    Article 

    Google Scholar 

  • Manenti, R., Conti, A. & Pennati, R. Fire salamander (Salamandra salamandra) males’ activity during breeding season: effects of microhabitat features and body size. Acta Herpetol. 12, 29–36 (2017).

    Google Scholar 

  • Weitere, M., Tautz, D., Neumann, D. & Steinfartz, S. Adaptive divergence vs. environmental plasticity: tracing local genetic adaptation of metamorphosis traits in salamanders. Mol. Ecol. 13, 1665–1677. https://doi.org/10.1111/j.1365-294X.2004.02155.x (2004).

    Article 
    PubMed 

    Google Scholar 

  • Manenti, R., Denoel, M. & Ficetola, G. F. Foraging plasticity favours adaptation to new habitats in fire salamanders. Anim. Behav. 86, 375–382. https://doi.org/10.1016/j.anbehav.2013.05.028 (2013).

    Article 

    Google Scholar 

  • Fernandez-Conradi, P., Mocellin, L., Desfossez, E. & Rasmann, S. Seasonal changes in arthropod diversity patterns along an Alpine elevation gradient. Ecol. Entomol. 45(5), 1035–1043 (2020).

    Article 

    Google Scholar 

  • Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744. https://doi.org/10.1126/science.aaj1631 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ficetola, G. F., Manenti, R., De Bernardi, F. & Padoa-Schioppa, E. Can patterns of spatial autocorrelation reveal population processes? An analysis with the fire salamander. Ecography 35, 693–703. https://doi.org/10.1111/j.1600-0587.2011.06483.x (2012).

    Article 

    Google Scholar 

  • Maiorano, L., Montemaggiori, A., Ficetola, G. F., O’Connor, L. & Thuiller, W. Tetra-EU 1.0: a species-level trophic meta-web of European tetrapods. Glob. Ecol. Biogeogr. 29, 1452–1457 (2020).

    Article 

    Google Scholar 

  • Caldonazzi, M., Nistri, A. & Tripepi, S. in Amphibia Vol. XLII (eds B. Lanza et al.) 221–227 (2007).

  • Morales-Castilla, I., Matias, M. G., Gravel, D. & Araújo, M. B. Inferring biotic interactions from proxies. Trends Ecol. Evol. 30, 347–356 (2015).

    Article 

    Google Scholar 

  • Bernini, F. et al. Atlante degli Anfibi e dei Rettili della Lombardia (Provincia di Cremona, 2004).

  • Peñalver-Alcázar, M., Galán, P. & Aragón, P. Assessing Rensch’s rule in a newt: roles of primary productivity and conspecific density in interpopulation variation of sexual size dimorphism. J. Biogeogr. 46, 2558–2569. https://doi.org/10.1111/jbi.13680 (2019).

    Article 

    Google Scholar 

  • Limongi, L., Ficetola, G. F., Romeo, G. & Manenti, R. Environmental factors determining growth of salamander larvae: a field study. Curr. Zool. 61, 421–427. https://doi.org/10.1093/czoolo/61.3.421 (2015).

    Article 

    Google Scholar 

  • Czeczuga, B. Some carotenoids in Chironomus annularius Meig. larvae (Diptera: Chironomidae). Hydrobiologia 36, 353–360. https://doi.org/10.1007/BF00039794 (1970).

    CAS 
    Article 

    Google Scholar 

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar 

  • visreg: Visualization of regression models. R package version 2.2-0. http://CRAN.R-project.org/package=visreg (2015).

  • Preißler, K. et al. More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. J. Zool. 308, 293–300. https://doi.org/10.1111/jzo.12676 (2019).

    Article 

    Google Scholar 

  • Kikuchi, D. W., Herberstein, M. E., Barfield, M., Holt, R. D. & Mappes, J. Why aren’t warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biol. Rev. 96, 2446–2460 (2021).

    Article 

    Google Scholar 

  • Abd El-Wakeil, K. F. Trophic structure of macro- and meso-invertebrates in Japanese coniferous forest: carbon and nitrogen stable isotopes analyses. Biochem. Systematics Ecol. 37, 317–324. https://doi.org/10.1016/j.bse.2009.05.008 (2009).

    CAS 
    Article 

    Google Scholar 

  • Frelich, L. E. et al. Trophic cascades, invasive species and body-size hierarchies interactively modulate climate change responses of ecotonal temperate-boreal forest. Philos. Trans. R. Soc. B Biol. Sci. 367, 2955–2961. https://doi.org/10.1098/rstb.2012.0235 (2012).

    Article 

    Google Scholar 

  • Umbers, K. D. L., Silla, A. J., Bailey, J. A., Shaw, A. K. & Byrne, P. G. Dietary carotenoids change the colour of Southern corroboree frogs. Biol. J. Linnean Soc. 119, 436–444. https://doi.org/10.1111/bij.12818 (2016).

    Article 

    Google Scholar 

  • Balogova, M. & Uhrin, M. Sex-biased dorsal spotted patterns in the fire salamander (Salamandra salamandra). Salamandra 51, 12–18 (2015).

    Google Scholar 

  • Arenas, L. M. & Stevens, M. Diversity in warning coloration is easily recognized by avian predators. J. Evol. Biol. 30, 1288–1302. https://doi.org/10.1111/jeb.13074 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilby, B. L., Burfeind, D. D. & Tibbetts, I. R. Better red than dead? Potential aposematism in a harpacticoid copepod, Metis holothuriae. Mar. Environ. Res. 74, 73–76. https://doi.org/10.1016/j.marenvres.2011.12.001 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Przeczek, K., Mueller, C. & Vamosi, S. M. The evolution of aposematism is accompanied by increased diversification. Integr. Zool. 3, 149–156. https://doi.org/10.1111/j.1749-4877.2008.00091.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • Moore, M. P. & Martin, R. A. On the evolution of carry-over effects. J Anim. Ecol. 88, 1832–1844. https://doi.org/10.1111/1365-2656.13081 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Raffaëlli, J. Les Urodeles du monde (Penclen Edition, 2007).

  • Velo-Anton, G., Zamudio, K. R. & Cordero-Rivera, A. Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108, 410–418. https://doi.org/10.1038/Hdy.2011.91 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rodriguez, A. et al. Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Mol. Phylogenet. Evol. 115, 16–26. https://doi.org/10.1016/j.ympev.2017.07.009 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Speed, M. P. & Ruxton, G. D. Aposematism: what should our starting point be?. Proc. Biol. Sci. 272, 431–438. https://doi.org/10.1098/rspb.2004.2968 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tarvin, R. D., Powell, E. A., Santos, J. C., Ron, S. R. & Cannatella, D. C. The birth of aposematism: high phenotypic divergence and low genetic diversity in a young clade of poison frogs. Mol. Phylogenet. Evol. 109, 283–295. https://doi.org/10.1016/j.ympev.2016.12.035 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Jusczcyk, W. & Zakrzewski, M. External morphology of larval stages of the spotted salamander Salamandra salamandra (L.). Acta Biol. Crac. 23, 127–135. https://doi.org/10.1111/jzo.12676 (1981).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    3Q: Why Europe is so vulnerable to heat waves

    Substantial differences in soil viral community composition within and among four Northern California habitats