in

Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials

  • Becker, J., Manske, C. & Randl, S. Green chemistry and sustainability metrics in the pharmaceutical manufacturing sector. Curr. Opin. Green Sustain. Chem. https://doi.org/10.1016/j.cogsc.2021.100562 (2022).

    Article 

    Google Scholar 

  • Rajasekharreddy, P., Rani, P. U. & Sreedhar, B. Qualitative assessment of silver and gold nanoparticle synthesis in various plants: A photobiological approach. J. Nanoparticle Res. 12, 25 (2010).

    Article 

    Google Scholar 

  • Mahmoud, A. E. D. Eco-friendly reduction of graphene oxide via agricultural byproducts or aquatic macrophytes. Mater. Chem. Phys. 253, 123336 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mahmoud, A. E. D., Stolle, A. & Stelter, M. Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain. Chem. Eng. 6, 25 (2018).

    Article 

    Google Scholar 

  • Mellinas, C., Jiménez, A. & del Carmen Garrigós, M. Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using theobroma cacao. l. bean shell extract. Molecules 24, 25 (2019).

    Article 

    Google Scholar 

  • Ahmed, S., Saifullah, A. M., Swami, B. L. & Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 9, 25 (2016).

    Google Scholar 

  • Ebadi, M. et al. A bio-inspired strategy for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the cell extract of cyanobacterium: Nostoc sp EA03: From biological function to toxicity evaluation. RSC Adv. 9, 25 (2019).

    Article 

    Google Scholar 

  • Mahmoud, A. E. D. & Fawzy, M. Nanosensors and nanobiosensors for monitoring the environmental pollutants. Top. Min. Metallurg. Mater. Eng. https://doi.org/10.1007/978-3-030-68031-2_9 (2021).

    Article 

    Google Scholar 

  • Mousavi, S. M. et al. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol. 46, 3. https://doi.org/10.1080/21691401.2018.1517769 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hussain, I., Singh, N. B., Singh, A., Singh, H. & Singh, S. C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38, 25. https://doi.org/10.1007/s10529-015-2026-7 (2016).

    Article 
    CAS 

    Google Scholar 

  • Singh, P., Kim, Y. J., Zhang, D. & Yang, D. C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 25. https://doi.org/10.1016/j.tibtech.2016.02.006 (2016).

    Article 
    CAS 

    Google Scholar 

  • Nilavukkarasi, M., Vijayakumar, S. & Prathipkumar, S. Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Mater. Sci. Energy Technol. 3, 25 (2020).

    Google Scholar 

  • Hussain, A. et al. Biogenesis of ZnO nanoparticles using: Pandanus odorifer leaf extract: Anticancer and antimicrobial activities. RSC Adv. 9, 25 (2019).

    Article 

    Google Scholar 

  • Mohamed Isa, E. D., Shameli, K., Che Jusoh, N. W., Mohamad Sukri, S. N. A. & Ismail, N. A. Variation of green synthesis techniques in fabrication of zinc oxide nanoparticles—a mini review. IOP Conf. Ser. Mater. Sci. Eng. 1051, 25 (2021).

    Article 

    Google Scholar 

  • Loganathan, S., Shivakumar, M. S., Karthi, S., Nathan, S. S. & Selvam, K. Metal oxide nanoparticle synthesis (ZnO-NPs) of Knoxia sumatrensis (Retz.) DC. Aqueous leaf extract and It’s evaluation of their antioxidant, anti-proliferative and larvicidal activities. Toxicol. Rep. 8, 25 (2021).

    Google Scholar 

  • Mahmoud, A. E. D., El-Maghrabi, N., Hosny, M. & Fawzy, M. Biogenic synthesis of reduced graphene oxide from Ziziphus spina-christi (Christ’s thorn jujube) extracts for catalytic, antimicrobial, and antioxidant potentialities. Environ. Sci. Pollut. Res. 20, 1–16 (2022).

    Google Scholar 

  • Ahmar Rauf, M., Oves, M., Ur Rehman, F., Rauf Khan, A. & Husain, N. Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomed. Pharmacother. 116, 25 (2019).

    Article 

    Google Scholar 

  • Chabattula, S. C. et al. Anticancer therapeutic efficacy of biogenic Am-ZnO nanoparticles on 2D and 3D tumor models. Mater. Today Chem. 22, 25 (2021).

    Google Scholar 

  • Berehu, H. M. et al. Cytotoxic potential of biogenic zinc oxide nanoparticles synthesized from swertia chirayita leaf extract on colorectal cancer cells. Front. Bioeng. Biotechnol. 9, 25 (2021).

    Article 

    Google Scholar 

  • Khezri, K., Saeedi, M. & Maleki Dizaj, S. Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed. Pharmacother. 106, 25. https://doi.org/10.1016/j.biopha.2018.07.084 (2018).

    Article 
    CAS 

    Google Scholar 

  • Smijs, T. G. & Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 4, 25. https://doi.org/10.2147/nsa.s19419 (2011).

    Article 

    Google Scholar 

  • Nasrollahzadeh, M. S. et al. Zinc oxide nanoparticles as a potential agent for antiviral drug delivery development: A systematic literature review. Curr. Nanosci. 18, 25 (2021).

    Google Scholar 

  • Perera, W. P. T. D. et al. Albumin grafted coaxial electrosparyed polycaprolactone-zinc oxide nanoparticle for sustained release and activity enhanced antibacterial drug delivery. RSC Adv. 12, 25 (2022).

    Article 

    Google Scholar 

  • Shalaby, M. A., Anwar, M. M. & Saeed, H. Nanomaterials for application in wound healing: Current state-of-the-art and future perspectives. J. Polym. Res. 29, 25. https://doi.org/10.1007/s10965-021-02870-x (2022).

    Article 
    CAS 

    Google Scholar 

  • Kaushik, M. et al. Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl. Surf. Sci. 479, 25 (2019).

    Article 

    Google Scholar 

  • Espitia, P. J. P., Otoni, C. G. & Soares, N. F. F. Zinc oxide nanoparticles for food packaging applications. Antimicrob. Food Packag. https://doi.org/10.1016/B978-0-12-800723-5.00034-6.4 (2016).

    Article 

    Google Scholar 

  • Doan Thi, T. U. et al. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv. 10, 25 (2020).

    Article 

    Google Scholar 

  • Shobha, N. et al. Synthesis and characterization of Zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mater. Sci. Eng. C 97, 25 (2019).

    Article 

    Google Scholar 

  • Zahran, M. A. & Willis, A. J. The vegetation of Egypt. Plant Veget. 2, 25 (2009).

    Google Scholar 

  • El-Borady, O. M., Fawzy, M. & Hosny, M. Antioxidant, anticancer and enhanced photocatalytic potentials of gold nanoparticles biosynthesized by common reed leaf extract. Appl. Nanosci. (Switzerland) https://doi.org/10.1007/s13204-021-01776-w (2021).

    Article 

    Google Scholar 

  • Hosny, M., Fawzy, M., Abdelfatah, A. M., Fawzy, E. E. & Eltaweil, A. S. Comparative study on the potentialities of two halophytic species in the green synthesis of gold nanoparticles and their anticancer, antioxidant and catalytic efficiencies. Adv. Powder Technol. 32, 25 (2021).

    Article 

    Google Scholar 

  • Vijayakumar, S. et al. Acalypha fruticosa L. Leaf extract mediated synthesis of ZnO nanoparticles: Characterization and antimicrobial activities. Mater. Today Proc. 23, 25 (2019).

    Google Scholar 

  • Fatimah, I., Pradita, R. Y. & Nurfalinda, A. Plant extract mediated of ZnO nanoparticles by using ethanol extract of mimosa pudica leaves and coffee powder. Proced. Eng. 148, 25 (2016).

    Article 

    Google Scholar 

  • Heneidy, S. Z. & Bidak, L. M. Potential uses of plant species of the coastal mediterranean region, Egypt. Pak. J. Biol. Sci. 7, 1010–1023 (2004).

    Article 

    Google Scholar 

  • Manousaki, E. & Kalogerakis, N. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res. 50, 25 (2011).

    Article 

    Google Scholar 

  • Zengin, G., Aumeeruddy-Elalfi, Z., Mollica, A., Yilmaz, M. A. & Mahomoodally, M. F. In vitro and in silico perspectives on biological and phytochemical profile of three halophyte species—a source of innovative phytopharmaceuticals from nature. Phytomedicine 38, 35–44 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xin, P. et al. Surface water and groundwater interactions in salt marshes and their impact on plant ecology and coastal biogeochemistry. Rev. Geophys. 60, 5. https://doi.org/10.1029/2021RG000740 (2022).

    Article 

    Google Scholar 

  • International Union for Conservation of Nature. International Union for Conservation of Nature Natural Resources IUCN Red List Categories and Criteria (IUCN, 2001).

    Google Scholar 

  • Boulos, L. Flora of Egypt Vol 417 21–22 (Al Hadara Publishing, 1999).

    Google Scholar 

  • Safawo, T., Sandeep, B. V., Pola, S. & Tadesse, A. Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. Open Nano 3, 25 (2018).

    Google Scholar 

  • Soltanian, S. et al. Biosynthesis of zinc oxide nanoparticles using hertia intermedia and evaluation of its cytotoxic and antimicrobial activities. https://doi.org/10.1007/s12668-020-00816-z/Published.

  • Ogbole, O. O., Segun, P. A. & Adeniji, A. J. In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC Complement Altern. Med. 17, 25 (2017).

    Article 

    Google Scholar 

  • Slater, T. F., Sawyer, B. & Sträuli, U. Studies on succinate-tetrazolium reductase systems. III Points of coupling of four different tetrazolium salts. Biochim. Biophys. Acta 77, 25 (1963).

    Article 

    Google Scholar 

  • Alley, M. C. et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 25 (1988).

    Google Scholar 

  • van de Loosdrecht, A. A., Beelen, R. H. J., Ossenkoppele, G. J., Broekhoven, M. G. & Langenhuijsen, M. M. A. C. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods 174, 25 (1994).

    Google Scholar 

  • Gonelimali, F. D. et al. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front. Microbiol. 9, 25 (2018).

    Article 

    Google Scholar 

  • Aldalbahi, A. et al. Greener synthesis of zinc oxide nanoparticles: Characterization and multifaceted applications. Molecules 25, 25 (2020).

    Article 

    Google Scholar 

  • López-Cuenca, S. et al. High-yield synthesis of zinc oxide nanoparticles from bicontinuous microemulsions. J. Nanomater. 2011, 25 (2011).

    Article 

    Google Scholar 

  • Sajadi, S. M. et al. Natural iron ore as a novel substrate for the biosynthesis of bioactive-stable ZnO@CuO@iron ore NCs: A magnetically recyclable and reusable superior nanocatalyst for the degradation of organic dyes, reduction of Cr(vi) and adsorption of crude oil aromatic compounds, including PAHs. RSC Adv. 8, 62. https://doi.org/10.1039/c8ra06028b (2018).

    Article 
    CAS 

    Google Scholar 

  • Meena, P. L., Poswal, K. & Surela, A. K. Facile synthesis of ZnO nanoparticles for the effective photodegradation of malachite green dye in aqueous solution. Water Environ. J. 36, 25 (2022).

    Article 

    Google Scholar 

  • El-Belely, E. F. et al. Green synthesis of zinc oxide nanoparticles (Zno-nps) using arthrospira platensis (class: Cyanophyceae) and evaluation of their biomedical activities. Nanomaterials 11, 25 (2021).

    Article 

    Google Scholar 

  • Faye, G., Jebessa, T. & Wubalem, T. Biosynthesis, characterisation and antimicrobial activity of zinc oxide and nickel doped zinc oxide nanoparticles using Euphorbia abyssinica bark extract (2021). https://doi.org/10.1049/nbt2.12072.

  • Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R. & Chauhan, P. K. A novel approach of synthesis zinc oxide nanoparticles by Bergenia ciliata rhizome extract: Antibacterial and anticancer potential. J. Inorg. Organomet. Polym. Mater. 31, 25 (2021).

    Article 

    Google Scholar 

  • Faisal, S. et al. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega 6, 25 (2021).

    Article 

    Google Scholar 

  • Adams, R. P. Identification of essential oil components by gas chromatography/mass spectrometry. J. Am. Soc. Mass Spectrometry 8, 25 (2007).

    Google Scholar 

  • VStein, S., Mirokhin, D., Tchekhovskoi, D., & Nist, G. M. The NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectra Library. Gaithersburg, MD: Standard Reference Data Program of the National Institute of Standards and Technology (2002).

  • Mahmoud, A. E. D., Hosny, M., El-Maghrabi, N. & Fawzy, M. Facile synthesis of reduced graphene oxide by Tecoma stans extracts for efficient removal of Ni (II) from water: Batch experiments and response surface methodology. Sustain. Environ. Res. 32, 25 (2022).

    Article 

    Google Scholar 

  • Balasubramani, G. et al. GC-MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity. J. Photochem. Photobiol. B 148, 25 (2015).

    Article 

    Google Scholar 

  • Barzinjy, A. A. & Azeez, H. H. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2, 25 (2020).

    Article 

    Google Scholar 

  • Anitha, R., Ramesh, K. V., Ravishankar, T. N., Sudheer Kumar, K. H. & Ramakrishnappa, T. Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method. J. Sci. Adv. Mater. Devices 3, 25 (2018).

    Google Scholar 

  • Chandra, H., Patel, D., Kumari, P., Jangwan, J. S. & Yadav, S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Mater. Sci. Eng. C 102, 25 (2019).

    Article 

    Google Scholar 

  • Majeed, S., Danish, M., Ismail, M. H., Ansari, M. T. & Ibrahim, M. N. M. Anticancer and apoptotic activity of biologically synthesized zinc oxide nanoparticles against human colon cancer HCT-116 cell line- in vitro study. Sustain. Chem. Pharm. 14, 25 (2019).

    Google Scholar 

  • Miri, A., Khatami, M., Ebrahimy, O. & Sarani, M. Cytotoxic and antifungal studies of biosynthesized zinc oxide nanoparticles using extract of Prosopis farcta fruit. Green Chem. Lett. Rev. 13, 25. https://doi.org/10.1080/17518253.2020.1717005 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ahamed, M., Akhtar, M. J., Khan, M. A. M. & Alhadlaq, H. A. Enhanced anticancer performance of eco-friendly-prepared Mo-ZnO/RGO nanocomposites: Role of oxidative stress and apoptosis. ACS Omega 7, 25 (2022).

    Article 

    Google Scholar 

  • Al-Mohaimeed, A. M., Al-Onazi, W. A. & El-Tohamy, M. F. Multifunctional eco-friendly synthesis of ZnO nanoparticles in biomedical applications. Molecules 27, 25 (2022).

    Article 

    Google Scholar 

  • Schreyer, M., Guo, L., Thirunahari, S., Gao, F. & Garland, M. Simultaneous determination of several crystal structures from powder mixtures: The combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods. J. Appl. Crystallogr. 47, 25 (2014).

    Article 

    Google Scholar 

  • Pu, Y., Niu, Y., Wang, Y., Liu, S. & Zhang, B. Statistical morphological identification of low-dimensional nanomaterials by using TEM. Particuology 61, 11–17 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wu, C. M., Baltrusaitis, J., Gillan, E. G. & Grassian, V. H. Sulfur dioxide adsorption on ZnO nanoparticles and nanorods. J. Phys. Chem. C 115, 10164–10172 (2011).

    Article 
    CAS 

    Google Scholar 

  • Saranya, S., Vijayaranai, K., Pavithra, S., Raihana, N. & Kumanan, K. In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis. Toxicol. Rep. 4, 25 (2017).

    Google Scholar 

  • Chelladurai, M. et al. Anti-skin cancer activity of Alpinia calcarata ZnO nanoparticles: Characterization and potential antimicrobial effects. J Drug Deliv. Sci. Technol. 61, 102180 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lingaraju, K., Naika, H. R., Nagabhushana, H. & Nagaraju, G. Euphorbia heterophylla (L.) mediated fabrication of ZnO NPs: Characterization and evaluation of antibacterial and anticancer properties. Biocatal. Agric. Biotechnol. 18, 25 (2019).

    Article 

    Google Scholar 

  • Sana, S. S. et al. Crotalaria verrucosa leaf extract mediated synthesis of zinc oxide nanoparticles: Assessment of antimicrobial and anticancer activity. Molecules 25, 25 (2020).

    Article 

    Google Scholar 

  • Bisht, G. & Rayamajhi, S. ZnO nanoparticles: A promising anticancer agent. Nanobiomedicine https://doi.org/10.5772/63437 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bharath, B., Perinbam, K., Devanesan, S., AlSalhi, M. S. & Saravanan, M. Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells. J. Mol. Struct. 1235, 25 (2021).

    Article 

    Google Scholar 

  • Selim, Y. A., Azb, M. A., Ragab, I., Abd El-Azim, H. M. & M.,. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci. Rep. 10, 25 (2020).

    Article 

    Google Scholar 

  • Medini, F. et al. Phytochemical analysis, antioxidant, anti-inflammatory, and anticancer activities of the halophyte Limonium densiflorum extracts on human cell lines and murine macrophages. South Afr. J. Bot. 99, 25 (2015).

    Article 

    Google Scholar 

  • Pan, M. H., Ghai, G. & Ho, C. T. Food bioactives, apoptosis, and cancer. Mol. Nutr. Food Res. 52, 20. https://doi.org/10.1002/mnfr.200700380 (2008).

    Article 
    CAS 

    Google Scholar 

  • Abdallah, H. M. & Ezzat, S. M. Effect of the method of preparation on the composition and cytotoxic activity of the essential oil of Pituranthos tortuosus. Z. Nat. Sect. C J. Biosci. 66 C, 25 (2011).

    Google Scholar 

  • Iqbal, J. et al. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci. Rep. 11, 25 (2021).

    Article 

    Google Scholar 

  • Norouzi Jobie, F., Ranjbar, M., Hajizadeh Moghaddam, A. & Kiani, M. Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. Adv. Powder Technol. 32, 21 (2021).

    Article 

    Google Scholar 

  • Chen, F. C., Huang, C. M., Yu, X. W. & Chen, Y. Y. Effect of nano zinc oxide on proliferation and toxicity of human gingival cells. Hum. Exp. Toxicol. 41, 15 (2022).

    Article 

    Google Scholar 

  • Sajjad, A. et al. Photoinduced fabrication of zinc oxide nanoparticles: Transformation of morphological and biological response on light irradiance. ACS Omega 6, 75 (2021).

    Article 

    Google Scholar 

  • Sohail, M. F. et al. Green synthesis of zinc oxide nanoparticles by neem extract as multi-facet therapeutic agents. J. Drug Deliv. Sci. Technol. 59, 15 (2020).

    Google Scholar 

  • Lopes, M., Sanches-Silva, A., Castilho, M., Cavaleiro, C. & Ramos, F. Halophytes as source of bioactive phenolic compounds and their potential applications. Crit. Rev. Food Sci. Nutr. 20, 20. https://doi.org/10.1080/10408398.2021.1959295 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bouarab-Chibane, L. et al. Antibacterial properties of polyphenols: Characterization and QSAR (quantitative structure-activity relationship) models. Front. Microbiol. 10, 77 (2019).

    Article 

    Google Scholar 

  • Guimarães, A. C. et al. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24, 11 (2019).

    Article 

    Google Scholar 

  • Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242. https://doi.org/10.1007/s40820-015-0040-x (2015).

    Article 
    CAS 

    Google Scholar 

  • Singh, T. A. et al. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv. Coll. Interface Sci. 295, 25. https://doi.org/10.1016/j.cis.2021.102495 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gao, Y. et al. Biofabrication of zinc oxide nanoparticles from Aspergillus niger, their antioxidant, antimicrobial and anticancer activity. J. Clust. Sci. 30, 11 (2019).

    Article 

    Google Scholar 

  • Luo, Q. et al. Terpenoid composition and antioxidant activity of extracts from four chemotypes of Cinnamomum camphora and their main antioxidant agents. Biofuels Bioprod. Biorefin. 16, 510–522 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bose, J., Rodrigo-Moreno, A. & Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 65, 25. https://doi.org/10.1093/jxb/ert430 (2014).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Increased fire activity under high atmospheric oxygen concentrations is compatible with the presence of forests

    Statistical optimization of a sustainable fertilizer composition based on black soldier fly larvae as source of nitrogen