in

Identification of soil particle size distribution in different sedimentary environments at river basin scale by fractal dimension

  • Siderius, C., Biemans, H., Kashaigili, J. & Conway, D. Water conservation can reduce future water-energy-food-environment trade-offs in a medium-sized African river basin. Agric. Water Manag. 266, 107548 (2022).

    Google Scholar 

  • Zhao, G., Liang, R., Li, K., Wang, Y. & Pu, X. Study on the coupling model of urbanization and water environment with basin as a unit: A study on the Hanjiang Basin in China. Ecol. Ind. 131, 108130 (2021).

    Google Scholar 

  • Zhu, Q. et al. Relationship between ecological quality and ecosystem services in a red soil hilly watershed in southern China. Ecol. Ind. 121, 107119 (2021).

    Google Scholar 

  • Fu, A. et al. The effects of ecological rehabilitation projects on the resilience of an extremely drought-prone desert riparian forest ecosystem in the Tarim River Basin, Xinjiang, China. Sci. Rep. 11, 18485 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dai, D. et al. Comprehensive assessment of the water environment carrying capacity based on the spatial system dynamics model, a case study of Yongding River Basin in North China. J. Clean. Prod. 344, 131137 (2022).

    Google Scholar 

  • Basu, H., Dandele, P. S. & Srivastava, S. K. Sedimentary facies of the Mesoproterozoic Srisailam Formation, Cuddapah basin, India: Implications for depositional environment and basin evolution. Mar. Pet. Geol. 133, 105242 (2021).

    Google Scholar 

  • Capella, W. et al. Sandy contourite drift in the late Miocene Rifian Corridor (Morocco): Reconstruction of depositional environments in a foreland-basin seaway. Sed. Geol. 355, 31–57 (2017).

    Google Scholar 

  • Ilevbare, M. & Omodolor, H. E. Ancient deposition environment, mechanism of deposition and textural attributes of Ajali Formation, western flank of the Anambra Basin, Nigeria. Case Stud. Chem. Environ. Eng. 2, 100022 (2020).

    Google Scholar 

  • Qiao, J. B., Zhu, Y. J., Jia, X. X. & Shao, M. A. Multifractal characteristics of particle size distributions (50–200 m) in soils in the vadose zone on the Loess Plateau, China. Soil Tillage Res. 205, 104786 (2021).

    Google Scholar 

  • Bach, E. M., Baer, S. G., Meyer, C. K. & Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 42, 2182–2191 (2010).

    CAS 

    Google Scholar 

  • Rodríguez-Lado, L. & Lado, M. Relation between soil forming factors and scaling properties of particle size distributions derived from multifractal analysis in topsoils from Galicia (NW Spain). Geoderma 287, 147–156 (2017).

    ADS 

    Google Scholar 

  • Mozaffari, H., Moosavi, A. A. & Dematte, J. A. M. Estimating particle-size distribution from limited soil texture data: Introducing two new methods. Biosys. Eng. 216, 198–217 (2022).

    Google Scholar 

  • Sudarsan, B., Ji, W., Adamchuk, V. & Biswas, A. Characterizing soil particle sizes using wavelet analysis of microscope images. Comput. Electron. Agric. 148, 217–225 (2018).

    Google Scholar 

  • Pollacco, J. A. P., Fernández-Gálvez, J. & Carrick, S. Improved prediction of water retention curves for fine texture soils using an intergranular mixing particle size distribution model. J. Hydrol. 584, 124597 (2020).

    Google Scholar 

  • Richer-de-Forges, A. C. et al. Hand-feel soil texture and particle-size distribution in central France. Relationships and implications. CATENA 213, 106155 (2022).

    CAS 

    Google Scholar 

  • Du, W. et al. Insights into vertical differences of particle number size distributions in winter in Beijing, China. Sci. Total Environ. 802, 149695 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Darder, M. L., Paz-González, A., García-Tomillo, A., Lado, M. & Wilson, M. G. Comparing multifractal characteristics of soil particle size distributions calculated by Mie and Fraunhofer models from laser diffraction measurements. Appl. Math. Model. 94, 36–48 (2021).

    Google Scholar 

  • Ke, Z. M. et al. Multifractal parameters of soil particle size as key indicators of the soil moisture distribution. J. Hydrol. 595, 125988 (2021).

    Google Scholar 

  • Qi, F. et al. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil Tillage Res. 184, 45–51 (2018).

    Google Scholar 

  • Tyler, S. W. & Wheatcraft, S. W. Fractal scaling of soil particle-size distribution: Analysis and imitations. Soil Sci. Soc. Am. J. 56, 362–369 (1992).

    ADS 

    Google Scholar 

  • Zhang, Y. et al. Effects of fractal dimension and water content on the shear strength of red soil in the hilly granitic region of southern China. Geomorphology 351, 106956 (2020).

    Google Scholar 

  • Ahmadi, A., Neyshabouri, M.-R., Rouhipour, H. & Asadi, H. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 400, 305–311 (2011).

    ADS 

    Google Scholar 

  • Gao, Z., Niu, F., Lin, Z. & Luo, J. Fractal and multifractal analysis of soil particle-size distribution and correlation with soil hydrological properties in active layer of Qinghai-Tibet Plateau, China. CATENA 203, 105373 (2021).

    Google Scholar 

  • Xu, G. et al. New method for the reconstruction of sedimentary systems including lithofacies, environments, and flow paths: A case study of the Xisha Trough Basin, South China Sea. Mar. Pet. Geol. 133, 105268 (2021).

    Google Scholar 

  • Li, Z., Yu, X., Dong, S., Chen, Q. & Zhang, C. Microtextural features on quartz grains from eolian sands in a subaqueous sedimentary environment: A case study in the hinterland of the Badain Jaran Desert, Northwest China. Aeolian Res. 43, 100573 (2020).

    Google Scholar 

  • Chen, T. et al. Modeling the effects of topography and slope gradient of an artificially formed slope on runoff, sediment yield, water and soil loss of sandy soil. CATENA 212, 106060 (2022).

    Google Scholar 

  • George, C. F., Macdonald, D. I. M. & Spagnolo, M. Deltaic sedimentary environments in the Niger Delta, Nigeria. J. Afr. Earth Sci. 160, 103592 (2019).

    Google Scholar 

  • Tian, Y. et al. Petrology, lithofacies, and sedimentary environment of Upper Cretaceous Abu Roash “G” in the AESW Block, Abu Gharadig Basin, Western Desert, Egypt. J. Afr. Earth Sci. 145, 178–189 (2018).

    ADS 

    Google Scholar 

  • Cheng, Z., Jalon-Rójas, I., Wang, X. H. & Liu, Y. Impacts of land reclamation on sediment transport and sedimentary environment in a macro-tidal estuary. Estuar. Coast. Shelf Sci. 242, 106861 (2020).

    Google Scholar 

  • Wei, X., Li, X. G. & Wei, N. Fractal features of soil particle size distribution in layered sediments behind two check dams: Implications for the Loess Plateau, China. Geomorphology 266, 133–145 (2016).

    ADS 

    Google Scholar 

  • Wang, S. et al. Grain size characteristics of surface sediment and its response to the dynamic sedimentary environment in Qiantang Estuary, China. Int. J. Sediment Res. 37, 457–467 (2022).

    Google Scholar 

  • Wided, S., Jalila, S. & Kamel, R. Grain size analysis and characterization of sedimentary environment along the Bizerte Coast, N-E of Tunisia. J. Afr. Earth Sc. 184, 104353 (2021).

    Google Scholar 

  • Cai, X., Yang, Y. E., Ringler, C., Zhao, J. & You, L. Agricultural water productivity assessment for the Yellow River Basin. Agric. Water Manag. 98, 1297 (2011).

    Google Scholar 

  • Fu, J., Zang, C. & Zhang, J. Economic and resource and environmental carrying capacity trade-off analysis in the Haihe river basin in China. J. Clean. Prod. 270, 122271 (2020).

    Google Scholar 

  • Zhang, K. et al. Confronting challenges of managing degraded lake ecosystems in the anthropocene, exemplified from the Yangtze River Basin in China. Anthropocene 24, 30–39 (2018).

    Google Scholar 

  • Huybrechts, N., Zhang, Y. F. & Verbanck, M. A. A new closure methodology for 1D fully coupled models of mobile-bed alluvial hydraulics: Application to silt transport in the Lower Yellow River. Int. J. Sedim. Res. 26(1), 36–49 (2011).

    Google Scholar 

  • Cheng, D. Z. Strengthen the financial foundation of ecological protection and development of the Yellow River Basin. People Tribune 27, 76–78 (2021).

    Google Scholar 

  • Yang, W. N., Zhou, L. & Sun, D. Q. Ecological vulnerability assessment of the Yellow River basin based on partition: Integration concept. Remote Sens. Nat. Resourc. 33(03), 211–218 (2021).

    Google Scholar 

  • Sun, H. et al. Exposure of population to droughts in the Haihe river basin under global warming of 1.5 and 2.0 °C Scenarios. Q. Int. 453, 74–84 (2017).

    ADS 

    Google Scholar 

  • Mandelbrott, B. B. The Fractal Geometry of Nature (W.H. Freeman and Company, 1983).

    Google Scholar 

  • Samiei-Fard, R., Heidari, A., Konyushkova, M. & Mahmoodi, S. Application of particle size distribution throughout the soil profile as a criterion for recognition of newly developed geoforms in the Southeastern Caspian coast. CATANA 203, 105362 (2021).

    CAS 

    Google Scholar 

  • Guo, J. Y. et al. Grain size characteristics and source analysis of aeolian sediment feed into river in Ulanbuh Desert along bank of Yellow River. J. China Inst. Water Resour. Hydropower Res. 19(01), 15–24 (2021).

    Google Scholar 

  • Ge, T. T., Xue, Y. J., Jiang, X. Y., Zou, L. & Wang, X. C. Sources and radiocarbon ages of organic carbon in different grain size fractions of Yellow River-transported particles and coastal sediments. Chem. Geol. 534, 119452 (2020).

    ADS 

    Google Scholar 

  • Hou, C. Y., Yi, Y. J., Song, J. & Zhou, Y. Effect of water-sediment regulation operation on sediment grain size and nutrient content in the lower Yellow River. J. Clean. Prod. 279, 123533 (2021).

    CAS 

    Google Scholar 

  • Ni, S. M., Feng, S. Y., Zhang, D. Q., Wang, J. G. & Cai, C. F. Sediment transport capacity in erodible beds with reconstituted soils of different textures. CATANA 183, 104197 (2019).

    Google Scholar 

  • Li, J. L. et al. Multifractal features of the particle-size distribution of suspended sediment in the Three Gorges Reservoir, China. Int. J. Sedim. Res. 36(4), 489–500 (2021).

    Google Scholar 

  • Wang, W. F., Liu, R. T., Guo, Z. X., Feng, Y. H. & Jiang, J. Y. Physical and chemical properties and fractal dimension distribution of soil under shrubs in the southern area of Tengger Desert. J. Desert Res. 41(01), 209–218 (2021).

    Google Scholar 

  • Wang, K., Pei, Z. Y., Wang, W. M., Hao, S. R. & Pang, G. H. Influence of the flat cycle on the fractal characteristics of soil pore structure in Salix psammophila. Sci. Technol. Eng. 21(07), 2647–2654 (2021).

    Google Scholar 

  • Gao, G. L. et al. Fractal approach to estimating changes in soil properties following the establishment of Caragana korshinskii shelterbelts in Ningxia, NW China. Ecol. Indic. 43, 236–243 (2014).

    CAS 

    Google Scholar 

  • Liu, X., Zhang, G. C., Heathman, G. C., Wang, Y. Q. & Huang, C. H. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China. Geoderma 154(1), 123–130 (2009).

    ADS 

    Google Scholar 

  • Xu, G. C., Li, Z. B. & Li, P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. CATENA 101, 17–23 (2013).

    CAS 

    Google Scholar 

  • Zhao, S. Q., Chi, D. Q., Jia, F. C., Deng, Y. P. & Sun, C. T. Fractal characteristics of saline soil particles in different regions. Jiangsu Agric. Sci. 49(06), 203–207 (2021).

    Google Scholar 


  • Source: Ecology - nature.com

    Tapping into the million-year energy source below our feet

    Kerry Emanuel: A climate scientist and meteorologist in the eye of the storm