in

Integrating remote sensing with ecology and evolution to advance biodiversity conservation

  • Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411 (2020).

    PubMed 

    Google Scholar 

  • Soto-Navarro, C. A. et al. Towards a multidimensional biodiversity index for national application. Nat. Sustain. 4, 933–942 (2021).

  • Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896–906 (2021).

    PubMed 

    Google Scholar 

  • Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Girardello, M. et al. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Sci. Rep. 9, 5636 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016).

    Google Scholar 

  • Paganini, M., Leidner, A. K., Geller, G., Turner, W. & Wegmann, M. The role of space agencies in remotely sensed essential biodiversity variables. Remote Sens. Ecol. Conserv. 2, 132–140 (2016).

    Google Scholar 

  • O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19–28 (2015).

    Google Scholar 

  • Skidmore, A. K. et al. Environmental science: agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Reddy, C. S. et al. Remote sensing enabled essential biodiversity variables for biodiversity assessment and monitoring: technological advancement and potentials. Biodivers. Conserv. 30, 1–14 (2021).

    Google Scholar 

  • Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 10, 43–59 (2017).

    Google Scholar 

  • Luque, S., Pettorelli, N., Vihervaara, P. & Wegmann, M. Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets. Methods Ecol. Evol. 9, 1784–1786 (2018).

    Google Scholar 

  • Moritz, C. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol. 3, 401–411 (1994).

    CAS 

    Google Scholar 

  • Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19, 497–503 (2004).

    PubMed 

    Google Scholar 

  • Czyż, E. A. et al. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol. Evol. 10, 7419–7430 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guillén-Escribà, C. et al. Remotely sensed between-individual functional trait variation in a temperate forest. Ecol. Evol. 11, 10834–10867 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol. 195, 752–765 (2012).

    PubMed 

    Google Scholar 

  • Wang, Z. et al. Foliar functional traits from imaging spectroscopy across biomes in the eastern North America. New Phytol. 228, 494–511 (2020).

    PubMed 

    Google Scholar 

  • Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908–1920 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).

    Google Scholar 

  • Gao, Q. et al. Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study. Proc. Natl Acad. Sci. USA 117, 33317–33324 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).

    PubMed 

    Google Scholar 

  • Hoffmann, A. A. & Sgrò, C. M. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? Integr. Zool. 13, 355–371 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marshall, C. R. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171, 726–742 (2008).

    PubMed 

    Google Scholar 

  • Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).

    PubMed 

    Google Scholar 

  • Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl Acad. Sci. USA 103, 632–636 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Google Scholar 

  • Zipkin, E. F. et al. Addressing data integration challenges to link ecological processes across scales. Front. Ecol. Environ. 19, 30–38 (2021).

    Google Scholar 

  • Cavender-Bares, J. et al. BII-Implementation: the causes and consequences of plant biodiversity across scales in a rapidly changing world. Res. Ideas Outcomes 7, e63850 (2021).

    Google Scholar 

  • Hwang, D. et al. A data integration methodology for systems biology. Proc. Natl Acad. Sci. USA 102, 17296–17301 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Malley, M. A. & Soyer, O. S. The roles of integration in molecular systems biology. Stud. Hist. Philos. Sci. C 43, 58–68 (2012).

    Google Scholar 

  • Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  • von Humboldt, A. & Bonpland, A. Essai sur la Géographie des Plantes, Accompagné d’un Tableau Physique des Régions Equinoxiales (Levrault & Schoell, 1807).

  • Darwin, C. On the Origin of Species by Means of Natural Selection 6th edn (with corrections and additions to 1872) (John Murray, 1888).

  • Braun, E. L. Deciduous Forests of Eastern North America (Hafner Publishing Company, 1967).

  • Slik, J. W. F. et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA 115, 1837 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).

    PubMed 

    Google Scholar 

  • Cavender-Bares, J., Ackerly, D., Hobbie, S. & Townsend, P. Evolutionary legacy effects on ecosystems: biogeographic origins, plant traits, and implications for management in the era of global change. Annu. Rev. Ecol. Evol. Syst. 47, 433–462 (2016).

    Google Scholar 

  • Crisp, M. D., Arroyo, M. T. K., Cook, L. G., Gandolfo, M. A. & Jordan, G. J. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Forrestel, E. J., Donoghue, M. J. & Smith, M. D. Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa. New Phytol. 203, 1000–1011 (2014).

    PubMed 

    Google Scholar 

  • Auler, A. S. & Smart, P. L. Late quaternary paleoclimate in semiarid northeastern Brazil from U-series dating of travertine and water-table speleothems. Quat. Res. 55, 159–167 (2001).

    CAS 

    Google Scholar 

  • Cheng, H. et al. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4, 1411 (2013).

    PubMed 

    Google Scholar 

  • Ledru, M.-P. et al. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 239–257 (1996).

    Google Scholar 

  • Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361–375 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 045501 (2011).

    Google Scholar 

  • Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E. & Wessman, C. A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 113, S78–S91 (2009).

    Google Scholar 

  • Graham, C. H. et al. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37, 711–719 (2014).

    Google Scholar 

  • Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T. & Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carnaval, A. C. et al. Prediction of phylogeographic endemism in an environmentally complex biome. Proc. R. Soc. B 281, 20141461 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Forest, F., Crandall, K. A., Chase, M. W. & Faith, D. P. Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philos. Trans. R. Soc. Lond. B 370, 20140002 (2015).

    Google Scholar 

  • Faith, D. P. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philos. Trans. R. Soc. Lond. B 370, 20140011 (2015).

    Google Scholar 

  • Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Google Scholar 

  • Lavorel, S. et al. Assessing functional diversity in the field—methodology matters! Funct. Ecol. 22, 134–147 (2008).

    Google Scholar 

  • Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).

    PubMed 

    Google Scholar 

  • Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Google Scholar 

  • Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).

    Google Scholar 

  • Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dahlin, K. M., Asner, G. P. & Field, C. B. Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proc. Natl Acad. Sci. USA 110, 6895–6900 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).

    PubMed 

    Google Scholar 

  • Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ 4, e2615v2612 (2016).

    Google Scholar 

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    PubMed 

    Google Scholar 

  • Asner, G. P., Martin, R. E., Anderson, C. B. & Knapp, D. E. Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens. Environ. 158, 15–27 (2015).

    Google Scholar 

  • Fajardo, A. & Siefert, A. Phenological variation of leaf functional traits within species. Oecologia 180, 951–959 (2016).

    PubMed 

    Google Scholar 

  • Townsend, P. A., Foster, J. R., Chastain, R. A. Jr. & Currie, W. S. Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS. Geosci. Remote Sens. IEEE Trans. 41, 1347–1354 (2003).

    Google Scholar 

  • Féret, J. B., Gitelson, A. A., Noble, S. D. & Jacquemoud, S. PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 193, 204–215 (2017).

    Google Scholar 

  • Berger, K. et al. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 92, 102174 (2020).

    Google Scholar 

  • Jacquemoud, S. & Ustin, S. Leaf Optical Properties (Cambridge Univ. Press, 2019).

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodo https://doi.org/10.5281/zenodo.3261807 (2016).

  • Folke, C. et al. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15, 20 (2010).

    Google Scholar 

  • Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).

  • Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Peterson, G., Allen, C. & Holling, C. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).

    Google Scholar 

  • MacDougall, A. S., McCann, K. S., Gellner, G. & Turkington, R. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494, 86–89 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Duncan, B. N. et al. Space‐based observations for understanding changes in the Arctic‐Boreal Zone. Rev. Geophys. 58, e2019RG000652 (2020).

    Google Scholar 

  • Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A. & Tesler, N. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. CATENA 71, 76–83 (2007).

    Google Scholar 

  • Meng, Y. et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform. 57, 101064 (2020).

    Google Scholar 

  • Wilson, A. M., Latimer, A. M. & Silander, J. A. Climatic controls on ecosystem resilience: postfire regeneration in the Cape Floristic Region of South Africa. Proc. Natl Acad. Sci. USA 112, 9058 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, Z. et al. Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes. J. Hydrol. 543, 818–831 (2016).

  • Allen, C. R. et al. Quantifying spatial resilience. J. Appl. Ecol. 53, 625–635 (2016).

    Google Scholar 

  • Lausch, A. et al. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol. 9, 1799–1809 (2018).

    Google Scholar 

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Faruk, A., Belabut, D., Ahmad, N., Knell, R. J. & Garner, T. W. J. Effects of oil-palm plantations on diversity of tropical anurans. Conserv. Biol. 27, 615–624 (2013).

    PubMed 

    Google Scholar 

  • Yue, S., Brodie, J. F., Zipkin, E. F. & Bernard, H. Oil palm plantations fail to support mammal diversity. Ecol. Appl. 25, 2285–2292 (2015).

    PubMed 

    Google Scholar 

  • Dislich, C. et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. Camb. Philos. Soc. 92, 1539–1569 (2017).

    PubMed 

    Google Scholar 

  • Slingsby, J. A., Moncrieff, G. R. & Wilson, A. M. Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics. ISPRS J. Photogramm. Remote Sens. 166, 15–25 (2020).

    Google Scholar 

  • Spasojevic, M. J. et al. Scaling up the diversity–resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob. Change Biol. 22, 1421–1432 (2016).

    Google Scholar 

  • van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).

    PubMed 

    Google Scholar 

  • Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).

    PubMed 

    Google Scholar 

  • Schweiger, A. K. et al. Coupling spectral and resource-use complementarity in experimental grassland and forest communities. Proc. R. Soc. B 288, 20211290 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).

    PubMed 

    Google Scholar 

  • Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Isbell, F., Tilman, D., Reich, P. B. & Clark, A. T. Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nat. Ecol. Evol. 3, 1533–1538 (2019).

    PubMed 

    Google Scholar 

  • Walters, M. & Scholes, R. The GEO Handbook on Biodiversity Observation Networks (Springer, 2017).

  • Kühl, H. S. et al. Effective biodiversity monitoring needs a culture of integration. One Earth 3, 462–474 (2020).

    Google Scholar 

  • Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 57, 395–408 (2015).

    Google Scholar 

  • Thompson, B. K., Olden, J. D. & Converse, S. J. Mechanistic invasive species management models and their application in conservation. Conserv. Sci. Pract. 3, e533 (2021).

    Google Scholar 

  • Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823–7828 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bush, M. B. et al. A 6900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev. 141, 52–64 (2016).

    Google Scholar 

  • Wright, J. L. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas. Glob. Change Biol. 27, 136–150 (2021).

    Google Scholar 

  • Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5, 273–284 (2021).

    PubMed 

    Google Scholar 

  • Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Ann. Rev. Environ. Res. 39, 125–159 (2014).

  • Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    CAS 

    Google Scholar 

  • Verburg, P. H., Erb, K.-H., Mertz, O. & Espindola, G. Land system science: between global challenges and local realities. Curr. Opin. Environ. Sustain. 5, 433–437 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).

    Google Scholar 

  • Burke, M., Driscoll, A., Lobell, D. B. & Ermon, S. Using satellite imagery to understand and promote sustainable development. Science 371, eabe8628 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020).

  • Trounstine, J. The geography of inequality: how land use regulation produces segregation. Am. Political Sci. Rev. 114, 443–455 (2020).

    Google Scholar 

  • Su, S., Pi, J., Xie, H., Cai, Z. & Weng, M. Community deprivation, walkability, and public health: highlighting the social inequalities in land use planning for health promotion. Land Use Policy 67, 315–326 (2017).

    Google Scholar 

  • Coomes, O. T., Takasaki, Y. & Rhemtulla, J. M. Forests as landscapes of social inequality tropical forest cover and land distribution among shifting cultivators. Ecol. Soc. 21, 20 (2016).

  • Watmough, G. R. et al. Socioecologically informed use of remote sensing data to predict rural household poverty. Proc. Natl Acad. Sci. USA 116, 1213 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verburg, P. H. et al. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12, 29–41 (2015).

    Google Scholar 

  • Bickenbach, F., Bode, E., Nunnenkamp, P. & Söder, M. Night lights and regional GDP. Rev. World Econ. 152, 425–447 (2016).

    Google Scholar 

  • Mayer, A. et al. Applying the human appropriation of net primary production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union. Ecosyst. Serv. 51, 101344 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. Urban Green Space Analysis on UBC Vancouver Campus: Integrating Virtual Gaming Technology to Map Cultural Use and Biodiversity Value of Urban Green Space (Univ. British Columbia, 2021).

  • Ghaffarian, S., Roy, D., Filatova, T. & Kerle, N. Agent-based modelling of post-disaster recovery with remote sensing data. Int. J. Disaster Risk Reduct. 60, 102285 (2021).

    Google Scholar 

  • Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    PubMed 

    Google Scholar 

  • Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 3, 795–798 (2020).

    Google Scholar 

  • Mirza, M. U., Xu, C., Bavel, B. V., van Nes, E. H. & Scheffer, M. Global inequality remotely sensed. Proc. Natl Acad. Sci. USA 118, e1919913118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kavvada, A. et al. Towards delivering on the Sustainable Development Goals using Earth observations. Remote Sens. Environ. 247, 111930 (2020).

    Google Scholar 

  • Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).

    Google Scholar 

  • Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 992 (2009).

    Google Scholar 

  • Madritch, M. D. et al. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philos. Trans. R. Soc. B 369, 20130194 (2014).

    Google Scholar 

  • Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357–363 (2015).

    PubMed 

    Google Scholar 

  • Cline, L. C. et al. Resource availability underlies the plant–fungal diversity relationship in a grassland ecosystem. Ecology 99, 204–216 (2018).

    PubMed 

    Google Scholar 

  • Wardle, D. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Meier, C. L. & Bowman, W. D. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc. Natl Acad. Sci. USA 105, 19780–19785 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gold, K. M. et al. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sens. 12, 286 (2020).

  • Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl. 24, 1651–1669 (2014).

    Google Scholar 

  • Fisher, J. B., Perakalapudi, N. V., Turner, B. L., Schimel, D. S. & Cusack, D. F. Sci. Rep. 10, 6725 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).

    PubMed 

    Google Scholar 

  • Meireles, J. E., O’Meara, B. & Cavender-Bares, J. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 155–172 (Springer, 2020).

  • Kothari, S. et al. Community-wide consequences of variation in photoprotective physiology among prairie plants. Photosynthetica 56, 455–467 (2018).

    CAS 

    Google Scholar 

  • Anderegg, L. D. L. et al. Representing plant diversity in land models: an evolutionary approach to make “functional types” more functional. Glob. Change Biol., https://doi.org/10.1111/gcb.16040 (2022).

  • Cavender-Bares, J. M. et al. Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Ecol. Monogr., https://doi.org/10.1002/ecm.1488 (2021).

  • Niemann, K. O., Quinn, G., Stephen, R., Visintini, F. & Parton, D. Hyperspectral remote sensing of mountain pine beetle with an emphasis on previsual assessment. Can. J. Remote Sens. 41, 191–202 (2015).

    Google Scholar 

  • Chu, H. et al. Soil microbial biogeography in a changing world: recent advances and future perspectives. mSystems 5, e00803–e00819 (2020).

  • King, G. M. Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends Microbiol. 19, 75–84 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Singh, A. K., Sisodia, A., Sisodia, V. & Padhi, M. in New and Future Developments in Microbial Biotechnology and Bioengineering (eds. Singh, J. S. & Singh, D. P.) 57–68 (Elsevier, 2019).

  • Eviner, V. T. Plant traits that influence ecosystem processes vary independently among species. Ecology 85, 2215–2229 (2004).

    Google Scholar 

  • Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).

    PubMed 

    Google Scholar 

  • Paneque-Gálvez, J. et al. High overlap between traditional ecological knowledge and forest conservation found in the Bolivian Amazon. Ambio 47, 908–923 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hilbert, M. The bad news is that the digital access divide is here to stay: domestically installed bandwidths among 172 countries for 1986–2014. Telecommun. Policy 40, 567–581 (2016).

    Google Scholar 

  • Prados, A. I. et al. Impact of the ARSET program on use of remote-sensing data. ISPRS Int. J. Geo-Inf. 8, 261 (2019).

  • Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).

    Google Scholar 

  • Chase, A. S. Z., Chase, D. & Chase, A. Ethics, new colonialism, and lidar data: a decade of lidar in Maya archaeology. J. Comput. Appl. Archaeol. 3, 51–62 (2020).

    Google Scholar 

  • Carrino, T. A., Crósta, A. P., Toledo, C. L. B. & Silva, A. M. Hyperspectral remote sensing applied to mineral exploration in southern Peru: a multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinf. 64, 287–300 (2018).

    Google Scholar 

  • Scafutto, R. D. P. M., de Souza Filho, C. R. & de Oliveira, W. J. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: implications for onshore exploration and monitoring. ISPRS J. Photogramm. Remote Sens. 128, 146–157 (2017).

    Google Scholar 

  • Turner, W. Sensing biodiversity. Science 346, 301–302 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 10, 1 (2021).

  • Randin, C. F. et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ. 239, 111626 (2020).

    Google Scholar 

  • Geller, G. N. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender Bares, J. et al.) 519–526 (Springer, 2020).

  • Asner, G. P. & Martin, R. E. Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv. 8, 212–219 (2016).

    Google Scholar 

  • Schneider, F. D. et al. Towards mapping the diversity of canopy structure from space with GEDI. Environ. Res. Lett. 15, 115006 (2020).

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • Green, R. O. et al. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 65, 227–248 (1998).

    Google Scholar 

  • Hook, S. & Fisher, J. ECO3ETPTJPL v001 ECOSTRESS Evapotranspiration PT-JPL Daily L3 Global 70 m https://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001 (LP DAAC, accessed 8 December 2021).

  • Turner, A. J. et al. A double peak in the seasonality of California’s photosynthesis as observed from space. Biogeosciences 17, 405–422 (2020).

    CAS 

    Google Scholar 

  • Radeloff, V. C. et al. The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sens. Environ. 222, 204–214 (2019).

    Google Scholar 

  • Crameri, F. Scientific colour-maps. Zenodo https://doi.org/10.5281/zenodo.1287763 (2018).

  • Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sensing 11, 2563 (2019).

  • Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390–399 (2019).

    PubMed 

    Google Scholar 

  • Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116, G04021 (2011).

  • Boonman, C. C. F. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr. 29, 1034–1051 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Google Scholar 

  • Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA 117, 9906 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lausch, A. et al. Linking Earth Observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecol. Indic. 70, 317–339 (2016).

    Google Scholar 

  • Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8, 1441 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rocchini, D. et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol. Inform. 5, 318–329 (2010).

    Google Scholar 

  • Schneider, F. D., Ferraz, A. & Schimel, D. Watching Earth’s interconnected systems at work. Eos, https://doi.org/10.1029/2019EO136205 (2019).

  • Laliberté, E., Schweiger, A. K. & Legendre, P. Partitioning plant spectral diversity into alpha and beta components. Ecol. Lett. 23, 370–380 (2020).

    PubMed 

    Google Scholar 

  • Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 231, 111218 (2019).

    Google Scholar 

  • Féret, J.-B. & Asner, G. P. Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. Ecol. Appl. 24, 1289–1296 (2014).

    PubMed 

    Google Scholar 

  • Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).

    Google Scholar 

  • Omasa, K., Hosoi, F. & Konishi, A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot. 58, 881–898 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Bae, S. et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. 10, 4757 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evol. 1, 0194 (2017).

  • Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).

    Google Scholar 

  • Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).

    PubMed 

    Google Scholar 

  • Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).

    PubMed 

    Google Scholar 

  • Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).

    PubMed 

    Google Scholar 

  • Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).

    PubMed 

    Google Scholar 

  • Fretwell, P. T. & Trathan, P. N. Penguins from space: faecal stains reveal the location of emperor penguin colonies. Glob. Ecol. Biogeogr. 18, 543–552 (2009).

    Google Scholar 

  • Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol. 29, 681–691 (2014).

    PubMed 

    Google Scholar 

  • Paz, A. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 255–266 (Springer International Publishing, 2020).

  • Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 11, 16448 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Papeş, M., Tupayachi, R., Martínez, P., Peterson, A. T. & Powell, G. V. N. Using hyperspectral satellite imagery for regional inventories: a test with tropical emergent trees in the Amazon Basin. J. Veg. Sci. 21, 342–354 (2010).

    Google Scholar 

  • Wang, Z. et al. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ. 221, 405–416 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Genetic variation in released gametes produces genetic diversity in the offspring of the broadcast spawning coral Acropora tenuis

    A better way to separate gases