in

Micro-endemic species of snails and amphipods show population genetic structure across very small geographic ranges

  • Abell RA, Olsen DM, Dinerstein E, Hurley PT (2000) Freshwater ecoregions of North America: a conservation assessment. Island Press, Washington, DC

    Google Scholar 

  • Adams NE, Inoue K, Seidel RA, Lang BK, Berg DJ (2018) Isolation drives increased diversification rates in freshwater amphipods. Mol Phylogenet Evol 127:746–757

    Google Scholar 

  • Allendorf FW, Luikart GH, Aitken SN (2012) Conservation and the genetics of populations. John Wiley and Sons, West Sussex, UK

    Google Scholar 

  • Ansah KN, Inoue K, Lang BK, Berg DJ (2014) Identification and characterization of 12 microsatellite loci for Physa in the Chihuahuan Desert. Conserv Genet Resour 6:769–771

    Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  • Bohonak A (1999) Dispersal, gene flow and population structure. Q Rev Biol 74:21–45

    CAS 

    Google Scholar 

  • Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6:783–796

    Google Scholar 

  • Bousfield EL (1958) Fresh-water amphipod crustaceans of glaciated North America. Can Field-Natural 72:55–113

    Google Scholar 

  • Bousset L, Pointier JP, David P, Jarne P (2014) Neither variation loss, nor change in selfing rate is associated with worldwide invasion of Physa acuta from its native North America. Biol Invasions 16:1769–1783

    Google Scholar 

  • Brune G (1981) Springs of Texas. Texas A and M University Press, Fort Worth, TX

    Google Scholar 

  • Burridge CP, Craw D, Jack CD, King TM, Waters JM (2008) Does fish ecology predict dispersal across a river drainage divide? Evolution 62:1484–1499

    Google Scholar 

  • Callens T, Galbusera P, Matthysen E, Durand EY, Githiru M, Huyghe JR, Lens L (2011) Genetic signature of population fragmentation varies with mobility in seven bird species of a fragmented Kenyan cloud forest. Mol Ecol 20:1829–1844

    Google Scholar 

  • Cayuela H, Rougemont Q, Prunier JG, Moore J-S, Clobert J, Besnard A, Bernatchez L (2018) Demographic and genetic approaches to study dispersal in wild animal populations: a methodological review. Mol Ecol 27:3976–4010

    Google Scholar 

  • Cegelski CC, Waits LP, Anderson NJ (2003) Assessing population structure and gene flow in Montana wolverines (Gulo gulo) using assignment-based approaches. Mol Ecol 12:2907–2918

    CAS 

    Google Scholar 

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Biol Evol 24:621–631

    CAS 

    Google Scholar 

  • Benton TG, Bowler DE (2012) Dispersal in invertebrates: influences on individual decisions. In: Clobert J, Baguette M, Benton TG, Bullock JM eds. Dispersal ecology and evolution. Oxford University Press

  • Cole GA (1981) Gammarus desperatus, a new species from New Mexico (Crustacea: Amphipoda). Hydrobiologia 76:27–32

    Google Scholar 

  • Collas FPL, Koopman KR, Hendriks AJ, van der Velde G, Verbrugge LNH, Leuven RSEW (2014) Effects of desiccation on native and non-native molluscs in rivers. Freshw Biol 59:41–55

    Google Scholar 

  • Dillon RT, Wethington AR, Rhett JM, Smith TP (2002) Populations of the European freshwater pulmonate Physa acuta are not reproductively isolated from American Physa heterostropha or Physa integra. Invertebr Biol 121:226–234

    Google Scholar 

  • Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, Telles MPDC, Rangel TF, Bini LM (2013) Mantel test in population genetics. Genet Mol Biol 36:475–485

    PubMed Central 

    Google Scholar 

  • Douglas ME, Douglas MR, Schuett GW, Porras LW (2006) Evolution of rattlesnakes (Viperidae: Crotalus) in the warm deserts of western North America shaped by Neogene vicariance and Quaternary climate change. Mol Ecol 15:3353–3374

    CAS 

    Google Scholar 

  • Duncan CJ (1975) Reproduction. In: Fretter V, Peake J eds. Pulmonates, vol. 1. Academic Press, New York, NY

  • Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94

    CAS 

    Google Scholar 

  • Frankham R (2003) Genetics and conservation biology. Comptes Rendus Biol 326:S22–S29

    Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gervasio V, Berg DJ, Allan NL, Guttman SI (2004) Genetic diversity in the Gammarus pecos species complex: implications for conservation and regional biogeography in the Chihuahuan Desert. Limnol Oceanogr 49:520–531

    Google Scholar 

  • Gómez-Rodriguez C, Miller KE, Castillejo J, Iglesias-Piñeiro, JI and Baselga A (2020) Disparate dispersal limitation in Geomalacus slugs unveiled by the shape and slope of the genetic-spatial distance relationship. Ecography: 43:1229–1240

  • Gomez-Uchida D, Knight TW, Ruzzante DE (2009) Interaction of landscape and life history attributes on genetic diversity, neutral divergence, and gene flow in a pristine community of salmonids. Mol Ecol 18:4854–4869

    Google Scholar 

  • Goudet J (1995) A computer program to calculate F-statistics. J Heredity 86:485–486

    Google Scholar 

  • Guillot G, Rousset F (2013) Dismantling the Mantel tests. Methods Ecol Evol 4:336–344

    Google Scholar 

  • Guzik MT, Cooper SJB, Humphreys WF, Austin AD (2009) Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in western Australia. Mol Ecol 18:3683–3698

    CAS 

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond Ser B: Biol Sci 351:1291–1298

    Google Scholar 

  • Hardy OJ, Charbonnel N, Fréville H, Heuertz M (2002) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Google Scholar 

  • Harpending HC, Batzer MA, Gurven M, Jorde LB, Rogers AR, Sherry ST (1998) Genetic traces of ancient demography. Proc Natl Acad Sci USA 95:1961–1967

    CAS 
    PubMed Central 

    Google Scholar 

  • Harris PM, Roosa BR, Norment L (2002) Underground dispersal by amphipods (Crangonyx pseudogracilis) between temporary ponds. J Freshw Ecol 17:589–594

    Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Google Scholar 

  • Hershler R (1994) A review of the North American freshwater snail genus Pyrgulopsis (Hydrobiidae). Smithson Contrib Zool 555:1–115

  • Hershler R (1998) A systematic review of the hydrobiid snails (Gastropoda: Rissooidea) of the Great Basin, western United States. Part I. Genus Pyrgulopsis. Veliger 41:1–132

  • Hershler R, Liu HP (2008) Ancient vicariance and recent dispersal of springsnails (Hydrobiidae: Pyrgulopsis) in the Death Valley System, California-Nevada. In: Hershler R, et al., eds. Late Cenozoic drainage history of the Southwestern Great Basin and Lower Colorado river region: geological and biotic perspectives. Geological Society of America Special Paper 439, Colorado, p 91–102

  • Hickerson M, Cunningham CW (2005) Contrasting quaternary histories in an ecologically divergent sister pair of low-dispersing intertidal fish (Xiphister) revealed by multilocus DNA analysis. Evolution 59:344–360

    Google Scholar 

  • Holste DR, Inoue K, Lang BK, Berg DJ (2016) Identification of microsatellite loci and examination of endangered springsnails Juturnia kosteri and Pyrgulopsis roswellensis in the Chihuahuan Desert. Aquat Conserv: Mar Freshw Ecosyst 26:715–723

    Google Scholar 

  • Hughes JM (2007) Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams. Freshw Biol 52:616–631

    Google Scholar 

  • Huxel GR, Hastings A (1999) Habitat loss, fragmentation, and restoration. Restor Ecol 7:309–314

    Google Scholar 

  • Jarne P, Charlesworth D (1993) The evolution of the selfing rate in functionally hermaphroditic plants and animals. Annu Rev Ecol Syst 24:441–466

    Google Scholar 

  • Johnson WP, Butler MJ, Sanchez JI, Wadlington BE (2019) Development of monitoring techniques for endangered spring endemic invertebrates: an assessment of abundance. Nat Areas J 39:150–168

    Google Scholar 

  • Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543

    CAS 

    Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Google Scholar 

  • Kodric-Brown A, Brown JH (2007) Native fishes, exotic mammals, and the conservation of desert springs. Front Ecol Environ 5:549–553

    Google Scholar 

  • Land L (2005) Evaluation of groundwater residence time in a karstic aquifer using environmental tracers: Roswell Artesian Basin, New Mexico. In: Proceedings of the tenth multidisciplinary conference on sinkholes and the engineering and environmental impacts of Karst, San Antonio, Texas 2005. ASCE Geotechnical Special Publication, 144, 432–440.

  • Land L, Newton BT (2007) Seasonal and long-term variations in hydraulic head in a karstic aquifer: Roswell Artesian Basin, New Mexico. New Mexico Bureau of Geology and Mineral Resources Open-File Report no. 503. New Mexico Bureau of Geology and Mineral Resources, Socorro

    Google Scholar 

  • Land L, Newton BT (2008) Seasonal and long-term variations in hydraulic head in a karstic aquifer: Roswell Artesian Basin, New Mexico. J Am Water Resour Assoc 44:175–191

    Google Scholar 

  • Lang BK (1998) Macroinvertebrate Population Monitoring at Bitter Lake National Wildlife Refuge, June 1995 to June 1998. New Mexico Department of Game and Fish. E-20-6 Performance Report.

  • Lang BK (2005) Longitudinal distribution and abundance of the Alamosa springsnail, Pseudotryonia alamosae, in the Alamosa Creek drainage, Socorro County, New Mexico. Final report to the U.S. Fish and Wildlife Service. New Mexico Department of Game and Fish, Albuquerque, New Mexico. (Available from: New Mexico Department of Game and Fish, One Wildlife Way, Santa Fe, New Mexico 87507 USA.)

  • Lefébure T, Douady CJ, Malard F, Gilbert J (2007) Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Mol Phylogenet Evol 42:676–686

    Google Scholar 

  • Legendre P, Fortin M-J (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10:831–844

    Google Scholar 

  • Legendre P, Fortin M-J, Borcard D (2015) Should the Mantel test be used in spatial analysis? Methods Ecol Evolution 6:1239–1247

    Google Scholar 

  • Lemer S, Planes S (2014) Effects of habitat fragmentation on the genetic structure and connectivity of the black-lipped pearl oyster Pinctada margaritifera populations in French Polynesia. Mar Biol 161:2035–2049

    Google Scholar 

  • Lewis CA, Lester NP, Bradshaw AD, Fitzgibbon JE, Fuller K, Hakanson L, Richards C (1996) Considerations of scale in habitat conservation and restoration. Can J Fish Aquat Sci 53:440–445

    Google Scholar 

  • Liu HP, Hershler R, Clift K (2003) Mitochondrial DNA sequences reveal extensive cryptic diversity within a western American springsnail. Mol Ecol 12:2771–2782

    CAS 

    Google Scholar 

  • Lydeard C, Campbell D, Golz M (2016) Physa acuta Draparnaud, 1805 should be treated as a native of North America, not Europe. Malacologia 59:347–350

    Google Scholar 

  • Marten A, Brändle M, Brandl R (2006) Habitat type predicts genetic population differentiation in freshwater invertebrates. Mol Ecol 15:2643–2651

    CAS 

    Google Scholar 

  • Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983

    CAS 

    Google Scholar 

  • Metcalf AL, Smartt RA (1997) Land snails of New Mexico. N Mex Mus Nat Hist Sci Bull 10:1–145

    Google Scholar 

  • Mims MC, Phillipsen IC, Lytle DA, Hartfield-Kirk EE, Olden JD (2015) Ecological strategies predict associations between aquatic and genetic connectivity for dryland amphibians. Ecology 96:1371–1382

    Google Scholar 

  • Monsutti A, Perrin N (1999) Dinucleotide microsatellite loci reveal a high selfing rate in the freshwater snail Physa acuta. Mol Ecol 8:1075–1092

    Google Scholar 

  • Morningstar CR, Inoue K, Sei M, Lang BK, Berg DJ (2014) Quantifying morphological and genetic variation of sympatric populations to guide conservation of endangered micro-endemic springsnails. Aquat Conserv: Mar Freshw Ecosyst 24:536–545

    Google Scholar 

  • Murphy NP, Adams M, Austin AD (2009) Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia’s Great Artesian Basin. Mol Ecol 18:109–122

    CAS 

    Google Scholar 

  • Murphy NP, Guzik MT, Worthington-Wilmer J (2010) The influence of landscape on population structure of four invertebrates in groundwater springs. Freshw Biol 55:2499–2509

    Google Scholar 

  • Murphy NP, Adams M, Guzik MT, Austin AD (2013) Extraordinary micro-endemism in Australian desert spring amphipods. Mol Phylogenet Evol 66:645–653

    CAS 

    Google Scholar 

  • Murphy NP, King RA, Delean S (2015) Species, ESUs or populations? Delimiting and describing morphologically cryptic diversity in Australian desert spring amphipods. Invertebr Syst 29:457–467

    Google Scholar 

  • Noel MS (1954) Animal ecology of a New Mexico springbrook. Hydrobiologia 6:120–135

    Google Scholar 

  • Ochoa-Ochoa LM, Bezaury-Creel JE, Vazquez L-B, Flores-Villela O (2011) Choosing the survivors? A GIS-based triage support tool for micro-endemics: application to data for Mexican amphibians. Biol Conserv 144:2710–2718

    Google Scholar 

  • Olson DM, Dinerstein E (1998) The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv Biol 12:502–515

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Google Scholar 

  • Phillipsen IC, Kirk EH, Bogan MT, Mims MC, Olden JD, Lytle DA (2015) Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects. Mol Ecol 24:54–69

    Google Scholar 

  • Phillipsen IC, Lytle DA (2012) Aquatic insects in a sea of desert: population genetic structure is shaped by limited dispersal in a naturally fragmented landscape. Ecography 36:731–743

    Google Scholar 

  • Ponder WF, Colgan DJ (2002) What makes a narrow-range taxon? Insights from Australian freshwater snails. Invertebr Syst 16:571–82

    Google Scholar 

  • Ponder WF, Colgan DJ, Clark SA, Miller AC, Terzis T (1994) Microgeographic, genetic and morphological differentiation of freshwater snails—the Hydrobiidae of Wilson’s Promontory, Victoria, South-eastern Australia. Aust J Zool 42:557–678

    Google Scholar 

  • Ponder WF, Eggler P, Colgan DJ (1995) Genetic differentiation of aquatic snails (Gastropoda: Hydrobiidae) from artesian springs in arid Australia. Biol J Linn Soc 56:553–596

    Google Scholar 

  • Ponder WF, Hershler R, Jenkins B (1989) An endemic radiation of hydrobiid snails from artesian springs in northern South Australia: their taxonomy, physiology, distribution and anatomy. Malacologia 31:1–140

    Google Scholar 

  • Puechmaille SJ, Gouilh MA, Piyapan P, Yokubol M, Mie Mie K, Bates PJ, Satasook C, Nwe T, Hla Bu SS, Mackie IJ, Petit EJ, Teeling EC (2011) The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat. Nat Commun 2:573

    Google Scholar 

  • Rachalewski M, Banha F, Grabowski M, Anastácio PM (2013) Ectozoochory as a possible vector enhancing the spread of an alien amphipod Crangonyx pseudogracilis. Hydrobiologia 717:109–117

    Google Scholar 

  • Ribera I, Vogler AP (2000) Habitat type as a determinant of species range sizes: the example of lotic-lentic differences in aquatic Coleoptera. Biol J Linn Soc 71:33–52

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Google Scholar 

  • Rice KJ, Emery NC (2003) Managing microevolution: restoration in the face of global change. Front Ecol Environ 1:469–478

    Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S eds. Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, p 365–386

  • Sada DW, Vinyard GL (2002) Anthropogenic changes in biogeography of Great Basin aquatic biota. Smithson Contrib Earth Sci 33:277–293

    Google Scholar 

  • Seidel RA, Lang BK, Berg DJ (2009) Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs. Biol Conserv 142:2303–2313

    Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    CAS 

    Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264

    CAS 
    PubMed Central 

    Google Scholar 

  • Stanislawczyk K, Walters AD, Haan TJ, Sei M, Lang BK, Berg DJ (2018) Variation among macroinvertebrate communities suggests the importance of conserving desert springs. Aquat Conserv: Mar Freshw Ecosyst 28:944–953

    Google Scholar 

  • Taylor DW (1987) Fresh-water molluscs from New Mexico and vicinity. N Mex Bur Mines Miner Resour Bull 116:1–50

  • Toro MA, Caballero A (2005) Characterization and conservation of genetic diversity in subdivided populations. Philos Trans R Soc B: Biol Sci 360:1367–1378

    CAS 

    Google Scholar 

  • U.S. Fish and Wildlife Service (1998) Final comprehensive conservation plan and environmental assessment. Bitter Lake National Wildlife Refuge, U.S. Fish and Wildlife Service, Southwest Region, Albuquerque, New Mexico

    Google Scholar 

  • U.S. Fish and Wildlife Service (2005) Endangered and threatened wildlife and plants; listing Roswell springsnail, Koster’s springsnail, Noel’s amphipod, and Pecos assiminea as endangered with critical habitat; final rule. Fed Register 70:46304–46333

    Google Scholar 

  • U.S. Fish and Wildlife Service (2019) Recovery plan for four invertebrate species of the Pecos River valley: Noel’s amphipod (Gammarus desperatus), Koster’s springsnail (Juturnia kosteri), Roswell springsnail (Pyrgulopsis roswellensis), and Pecos assiminea (Assiminea pecos). Southwest Region, Albuquerque, New Mexico

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Google Scholar 

  • Walters AD, Cannizzaro AG, Trujillo DA, Berg DJ (2021) Addressing the Linnean shortfall in a cryptic species complex. Zool J Linn Soc 192:277–305

  • Walters AD, Schwartz MK (2020) Population genomics and management of wild vertebrate populations. In: Hohenlohe P, Rajora OP eds. Population genomics: wildlife. Springer International Publishing, Switzerland

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Heredity 89:438–450

    Google Scholar 

  • Wethington AR, Lydeard C (2007) A molecular phylogeny of Physidae (Gastropoda: Basommatophora) based on mitochondrial DNA sequences. J Mollusca Stud 73:241–257

    Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed Central 

    Google Scholar 

  • Witt JDS, Threloff DL, Hebert PDN (2006) DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol Ecol 15:3073–3082

    CAS 

    Google Scholar 

  • Witt JDS, Threloff DL, Hebert PDN (2008) Genetic zoogeography of the Hyalella azteca species complex in the Great Basin: rapid rates of molecular diversification in desert springs. In: Hershler R, et al., eds. Late Cenozoic drainage history of the southwestern Great Basin and Lower Colorado River region: geologic and biotic perspectives. Geological Society of America Special Paper 439, Colorado, p 103–114

  • Worthington-Wilmer JL, Murray L, Elkin C, Wilcox C, Niejalke D, Possingham H (2011) Catastrophic floods may pave the way for increased genetic diversity in endemic spring snail populations. PLoS One 6:e28645

    PubMed Central 

    Google Scholar 

  • Zickovich JM, Bohonak AJ (2007) Dispersal ability and genetic structure in aquatic invertebrates: a comparative study in southern California streams and reservoirs. Freshw Biol 52:1982–1996

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Finding her way to fusion

    Q&A: Bettina Stoetzer on envisioning a livable future