in

Pollinator biological traits and ecological interactions mediate the impacts of mosquito-targeting malathion application

  • Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14(10), 1062–1072 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 10(4), 299–314 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Kluser, S. & Peduzzi, P. Global pollinator decline: A literature review. Preprint at http://archive-ouverte.unige.ch/unige 32258 (2007).

  • Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25(6), 345–353 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Rhodes, C. J. Pollinator decline—an ecological calamity in the making?. Sci. Prog. 101(2), 121–160 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Huang, H. & D’Odorico, P. Critical transitions in plant-pollinator systems induced by positive inbreeding-reward-pollinator feedbacks. Iscience 23(2), 100819 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krishnan, N. et al. Assessing field-scale risks of foliar insecticide applications to monarch butterfly (Danaus plexippus) larvae. Environ. Toxicol. Chem. 39(4), 923–941 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bargar, T. A., Hladik, M. L. & Daniels, J. C. Uptake and toxicity of clothianidin to monarch butterflies from milkweed consumption. PeerJ 8, e8669 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Emmel, T. C. & Tucker, J. C. In Mosquito Control Pesticides: Ecological Impacts and Management Alternatives (eds Emmel, T. C. & Tucker, J. C.) 105 (Scientific Publishers, 1991).

  • Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity–USA. Apidologie 41(3), 312–331 (2010).

    CAS 
    Article 

    Google Scholar 

  • Olaya-Arenas, P., Scharf, M. E. & Kaplan, I. Do pollinators prefer pesticide-free plants? An experimental test with monarchs and milkweeds. J. Appl. Ecol. 57(10), 2019–2030 (2020).

    CAS 
    Article 

    Google Scholar 

  • Berryman, A. A. What causes population cycles of forest Lepidoptera?. Trends Ecol. Evol. 11(1), 28–32 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Elkinton, J. & Boettner, G. Benefits and harm caused by the introduced generalist tachinid, Compsilura concinnata North America. Biol. Control 57(2), 277–288 (2012).

    Google Scholar 

  • Beschta, R. L. & Ripple, W. J. Riparian vegetation recovery in Yellowstone: The first two decades after wolf reintroduction. Biol. Conserv. 198, 93–103 (2016).

    Article 

    Google Scholar 

  • Oberhauser, K. et al. Lacewings wasps and fliesoh my insect enemies take a bite out of monarchs. In Monarchs in a Changing World: Biology and Conservation of an iconic insect (eds Oberhauser, K. S. et al.) 71–82 (Cornell University Press, 2015).

    Chapter 

    Google Scholar 

  • Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47(1), 361–393 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hermann, S. L., Blackledge, C., Haan, N. L., Myers, A. T. & Landis, D. A. Predators of monarch butterfly eggs and neonate larvae are more diverse than previously recognised. Sci. Rep. 9(1), 1–9 (2019).

    CAS 
    Article 

    Google Scholar 

  • McCoshum, S. M., Andreoli, S. L., Stenoien, C. M., Oberhauser, K. S. & Baum, K. A. Species distribution models for natural enemies of monarch butterfly (Danaus plexippus) larvae and pupae: Distribution patterns and implications for conservation. J. Insect Conserv. 20(2), 223–237 (2016).

    Article 

    Google Scholar 

  • Geest, E. A., Wolfenbarger, L. L. & McCarty, J. P. Recruitment, survival and parasitism of monarch butterflies (Danaus plexippus) in milkweed gardens and conservation areas. J. Insect Conserv. 23(2), 211–224 (2019).

    Article 

    Google Scholar 

  • Stenoien, C. et al. Monarchs in decline: A collateral landscape-level effect of modern agriculture. Insect Sci. 25(4), 528–541 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Crone, E. E., Pelton, E. M., Brown, L. M., Thomas, C. C. & Schultz, C. B. Why are monarch butterflies declining in the west? Understanding the importance of multiple correlated drivers. Ecol. Appl. 29(7), e01975 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Brower, L. P. et al. Effect of the 2010–2011 drought on the lipid content of monarchs migrating through Texas to overwintering sites in Mexico. In The Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds Oberhauser, K. S. et al.) 117–129 (Cornell University Press, 2015).

    Google Scholar 

  • Thogmartin, W. E. et al. Monarch butterfly population decline in North America: Identifying the threatening processes. R. Soc. Open Sci. 4(9), 170760 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Olaya-Arenas, P. & Kaplan, I. Quantifying pesticide exposure risk for monarch caterpillars on milkweeds bordering agricultural land. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00223 (2019).

    Article 

    Google Scholar 

  • Olaya-Arenas, P., Hauri, K., Scharf, M. E. & Kaplan, I. Larval pesticide exposure impacts monarch butterfly performance. Sci. Rep. 10(1), 1–12 (2020).

    Article 

    Google Scholar 

  • Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. PNAS 108(2), 662–667 (2011).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Epstein, L. Fifty years since silent spring. Annu. Rev. Phytopathol. 52, 377–402 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rayor, L. S. Effects of monarch larval host plant chemistry and body size on Polistes wasp predation. In The Monarch Butterfly Biology and Conservation (eds Oberhauser, K. S. & Solensky, M. J.) 39–46 (Cornell University Press, 2004).

    Google Scholar 

  • Baker, A. M. & Potter, D. A. Invasive paper wasp turns urban pollinator gardens into ecological traps for monarch butterfly larvae. Sci. Rep. 10(1), 1–7 (2020).

    Article 

    Google Scholar 

  • Castellanos, I. & Barbosa, P. Dropping from host plants in response to predators by a polyphagous caterpillar. J. Lepid. Soc. 65(4), 270–272 (2011).

    Google Scholar 

  • Kessler, S. C. et al. Bees prefer foods containing neonicotinoid pesticides. Nature 521(7550), 74–76 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liao, L.-H., Wu, W.-Y. & Berenbaum, M. R. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Sci. Rep. 7(1), 1–8 (2017).

    Article 

    Google Scholar 

  • Musser, R. O. et al. Caterpillar saliva beats plant defences. Nature 416(6881), 599–600 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schmidt, J. & Smith, J. Host examination walk and oviposition site selection of Trichogramma minutum: Studies on spherical hosts. J. Insect Behav. 2(2), 143–171 (1989).

    Article 

    Google Scholar 

  • Ramos, R. S. et al. Investigation of the lethal and behavioral effects of commercial insecticides on the parasitoid wasp Copidosoma truncatellum. Chemosphere 191, 770–778 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chareonviriyaphap, T. et al. Pesticide avoidance behavior in Anopheles albimanus, a malaria vector in the Americas. J. Am. Mosq. Control Assoc. 13(2), 171–183 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Nansen, C., Baissac, O., Nansen, M., Powis, K. & Baker, G. Behavioral avoidance-will physiological insecticide resistance level of insect strains affect their oviposition and movement responses?. PLoS ONE 11(3), e0149994 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martini, X., Kincy, N. & Nansen, C. Quantitative impact assessment of spray coverage and pest behavior on contact pesticide performance. Pest Manag. Sci. 68(11), 1471–1477 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bull, D. & Coleman, R. Effects of pesticides on Trichogramma spp. Southwest. Entomol. Suppl. 8, 156–168 (1985).

    CAS 

    Google Scholar 

  • Thubru, D., Firake, D. & Behere, G. Assessing risks of pesticides targeting lepidopteran pests in cruciferous ecosystems to eggs parasitoid, Trichogramma brassicae (Bezdenko). Saudi J. Biol. Sci. 25(4), 680–688 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Selwood, K. & Zimmer, H. Refuges for biodiversity conservation: A review of the evidence. Biol. Conserv. 245, 108502 (2020).

    Article 

    Google Scholar 

  • Chmiel, J. A., Daisley, B. A., Pitek, A. P., Thompson, G. J. & Reid, G. Understanding the effects of sublethal pesticide exposure on honey bees: A role for probiotics as mediators of environmental stress. Front. Ecol. Evol. 8, 22 (2020).

    Article 

    Google Scholar 

  • Chittka, L., Williams, N., Rasmussen, H. & Thomson, J. Navigation without vision: Bumblebee orientation in complete darkness. Proc. R. Soc. B 266(1414), 45–50 (1999).

    PubMed Central 
    Article 

    Google Scholar 

  • Young, M. W. & Kay, S. A. Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2(9), 702–715 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mallet, J. Gregarious roosting and home range in Heliconius butterflies. Natl. Geogr. Res. 2(2), 198–215 (1986).

    Google Scholar 

  • Chang, Y.-M. et al. Roosting site usage, gregarious roosting and behavioral interactions during roost-assembly of two Lycaenidae butterflies. Zool. Stud. 59, e10 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vulinec, K. Collective security aggregation by insects as a defence. In Insect Defences. Adaptive Mechanisms of Prey and Predators (eds Evans, D. L. & Schmidt, J. O.) 251–288 (State University of New York, 1990).

    Google Scholar 

  • Salcedo, C. Environmental elements involved in communal roosting in Heliconius butterflies (Lepidoptera: Nymphalidae). Environ. Entomol. 39(3), 907–911 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Giordano, B. V., McGregor, B. L., Runkel, A. E. IV. & Burkett-Cadena, N. D. Distance diminishes the effect of deltamethrin exposure on the monarch butterfly, Danaus plexippus. J. Am. Mosq. Control Assoc. 36(3), 181–188 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Matzrafi, M. Climate change exacerbates pest damage through reduced pesticide efficacy. Pest Manag. Sci. 75(1), 9–13 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hewitt, A. Spray drift: Impact of requirements to protect the environment. Crop Prot. 19(8–10), 623–627 (2000).

    Article 

    Google Scholar 

  • Nail, K. R., Stenoien, C. & Oberhauser, K. S. Immature monarch survival: Effects of site characteristics, density and time. Ann. Entomol. Soc. 108(5), 680–690 (2015).

    Article 

    Google Scholar 

  • Payne, C. C. & Mertens, P. P. Cytoplasmic polyhedrosis viruses. In The Reoviridae (ed. Joklik, K.) 425–504 (Springer, 1983).

    Chapter 

    Google Scholar 

  • Zalucki, M. P. et al. It’s the first bites that count: Survival of first-instar monarchs on milkweeds. Austral. Ecol. 26(5), 547–555 (2001).

    Article 

    Google Scholar 

  • Salvato, M. Influence of mosquito control chemicals on butterflies (Nymphalidae, Lycaenidae, Hesperiidae) of the lower Florida keys. J. Lepid. Soc. 55(1), 8–14 (2001).

    Google Scholar 

  • Frey, D. F. & Leong, K. L. Can microhabitat selection or differences in ‘catchability’ explain male-biased sex ratios in overwintering populations of monarch butterflies?. Anim. Behav. 45(5), 1025 (1993).

    Article 

    Google Scholar 

  • Macgregor, C. J. & Scott-Brown, A. S. Nocturnal pollination: An overlooked ecosystem service vulnerable to environmental change. Emerg. Top. Life Sci. 4(1), 19–32 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Split westerlies over Europe in the early Little Ice Age

    3Q: Why Europe is so vulnerable to heat waves