in

Rare species disproportionally contribute to functional diversity in managed forests

  • Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article 

    Google Scholar 

  • Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecol. Monogr. 80, 469–484 (2010).

    Article 

    Google Scholar 

  • Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. B Biol. Sci. 269, 1721–1727 (2002).

    Article 

    Google Scholar 

  • Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science (80-. ). 277, 1300–1302 (1997).

  • Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Article 

    Google Scholar 

  • Tilman, D. Functional diversity. in Encyclopedia of Biodiversity, Volume 3 (ed. Levin, S. A.) 109–120 (Academic Press, 2001).

  • McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).

    Article 

    Google Scholar 

  • Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform?. Ecology 85, 847–857 (2004).

    Article 

    Google Scholar 

  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).

    Article 

    Google Scholar 

  • Halpern, B. S. & Floeter, S. R. Functional diversity responses to changing species richness in reef fish communities. Mar. Ecol. Prog. Ser. 364, 147–156 (2008).

    Article 
    ADS 

    Google Scholar 

  • Seymour, C. L., Simmons, R. E., Joseph, G. S. & Slingsby, J. A. On bird functional diversity: Species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape. Ecosystems 18, 971–984 (2015).

    Article 

    Google Scholar 

  • Müller, J., Jarzabek-Müller, A., Bussler, H. & Gossner, M. M. Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim. Conserv. 17, 154–162 (2014).

    Article 

    Google Scholar 

  • Ulrich, W. et al. Species assortment or habitat filtering: A case study of spider communities on lake islands. Ecol. Res. 25, 375–381 (2010).

    Article 

    Google Scholar 

  • Mouillot, D., Dumay, O. & Tomasini, J. A. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuar. Coast. Shelf Sci. 71, 443–456 (2007).

    Article 
    ADS 

    Google Scholar 

  • Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).

    Article 

    Google Scholar 

  • Sol, D. et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23, 962–972 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Bihn, J. H., Gebauer, G. & Brandl, R. Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91, 782–792 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Balestrieri, R. et al. A guild-based approach to assessing the influence of beech forest structure on bird communities. For. Ecol. Manage. 356, 216–223 (2015).

    Article 

    Google Scholar 

  • Basile, M., Mikusiński, G. & Storch, I. Bird guilds show different responses to tree retention levels: A meta-analysis. Glob. Ecol. Conserv. 18, e00615 (2019).

    Article 

    Google Scholar 

  • Czeszczewik, D. et al. Effects of forest management on bird assemblages in the Bialowieza Forest, Poland. iForest – Biogeosciences For. 8, 377–385 (2015).

    Article 

    Google Scholar 

  • Wesołowski, T. Primeval conditions—What can we learn from them? Ibis (Lond. 1859). 149, 64–77 (2007).

  • Paillet, Y. et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in europe. Conserv. Biol. 24, 101–112 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Götzenberger, L. et al. Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol. Rev. 87, 111–127 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Fox, J. W. & Kerr, B. Analyzing the effects of species gain and loss on ecosystem function using the extended Price equation partition. Oikos 121, 290–298 (2012).

    Article 

    Google Scholar 

  • Fox, J. W. Using the Price Equations to partition the effects of biodiversity loss on ecosystem function. Ecology 87, 2687–2696 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Winfree, R. W., Fox, J., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Storch, I. et al. Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multi‐scale approach. Ecol. Evol. ece3.6003 (2020) https://doi.org/10.1002/ece3.6003.

  • Pommerening, A. & Murphy, S. T. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77, 27–44 (2004).

    Article 

    Google Scholar 

  • Bauhus, J., Puettmannn, K. J. & Kühne, C. Close-to-nature forest management in Europe: does it support complexity and adaptability of forest ecosystems? in Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change 187–213 (Routledge/The Earthscan Forest Library, 2013). https://doi.org/10.4324/9780203122808.

  • Bauhus, J., Puettmannn, K. J. & Kühne, C. Is Close-to-Nature Forest Management in Europe Compatible with Managing Forests as Complex Adaptive Forest Ecosystems? in Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change (eds. Messier, C., Puettmannn, K. J. & Coates, K. D.) 187–213 (Routledge/The Earthscan Forest Library, 2013).

  • Balestrieri, R., Basile, M., Posillico, M., Altea, T. & Matteucci, G. Survey effort requirements for bird community assessment in forest habitats. Acta Ornithol. 52, 1–9 (2017).

    Article 

    Google Scholar 

  • Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Article 

    Google Scholar 

  • Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857 (1971).

    Article 

    Google Scholar 

  • Kahl, T. & Bauhus, J. An index of forest management intensity based on assessment of harvested tree volume, tree species composition and dead wood origin. Nat. Conserv. 7, 15–27 (2014).

    Article 

    Google Scholar 

  • Paillet, Y. et al. Quantifying the recovery of old-growth attributes in forest reserves: A first reference for France. For. Ecol. Manage. 346, 51–64 (2015).

    Article 

    Google Scholar 

  • Burrascano, S., Lombardi, F. & Marchetti, M. Old-growth forest structure and deadwood: Are they indicators of plant species composition? A case study from central Italy. Plant Biosyst. 142, 313–323 (2008).

    Article 

    Google Scholar 

  • Van Wagner, C. E. Practical aspects of the line intersect method. (Minister of Supply and Services Canada, 1982).

  • Larrieu, L. et al. Tree related microhabitats in temperate and Mediterranean European forests: A hierarchical typology for inventory standardization. Ecol. Indic. 84, 194–207 (2018).

    Article 

    Google Scholar 

  • Asbeck, T., Pyttel, P., Frey, J. & Bauhus, J. Predicting abundance and diversity of tree-related microhabitats in Central European montane forests from common forest attributes. For. Ecol. Manage. 432, 400–408 (2019).

    Article 

    Google Scholar 

  • Paillet, Y. et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13181 (2018).

    Article 

    Google Scholar 

  • Basile, M. et al. What do tree-related microhabitats tell us about the abundance of forest-dwelling bats, birds, and insects?. J. Environ. Manage. 264, 110401 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Wang, Q., Adiku, S., Tenhunen, J. & Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 94, 244–255 (2005).

    Article 
    ADS 

    Google Scholar 

  • Rafique, R., Zhao, F., De Jong, R., Zeng, N. & Asrar, G. R. Global and regional variability and change in terrestrial ecosystems net primary production and NDVI: A model-data comparison. Remote Sens. 8, 1–16 (2016).

    Article 

    Google Scholar 

  • Bates, D. et al. Package ‘lme4’. R Found. Stat. Comput. Vienna 12, (2014).

  • Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-87458-6.

  • Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. (2019).

  • R Core Team. R: A language and environment for statistical computing. (2021).

  • Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).

    Google Scholar 

  • Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. 86, 792–812 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Mayfield, M. M., Boni, M. F., Daily, G. C. & Ackerly, D. Species and functional diversity of natie and human-dominated plant communities. Ecology 86, 2365–2372 (2005).

    Article 

    Google Scholar 

  • Holdaway, R. J. & Sparrow, A. D. Assembly rules operating along a primary riverbed-grassland successional sequence. J. Ecol. 94, 1092–1102 (2006).

    Article 

    Google Scholar 

  • Matuoka, M. A., Benchimol, M., de Almeida-Rocha, J. M. & Morante-Filho, J. C. Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecol. Indic. 116, 106471 (2020).

    Article 

    Google Scholar 

  • Leaver, J., Mulvaney, J., Ehlers-Smith, D. A., Ehlers-Smith, Y. C. & Cherry, M. I. Response of bird functional diversity to forest product harvesting in the Eastern Cape, South Africa. For. Ecol. Manage. 445, 82–95 (2019).

    Article 

    Google Scholar 

  • Poos, M. S., Walker, S. C. & Jackson, D. A. Functional-diversity indices can be driven by methodological choices and species richness. Ecology 90, 341–347 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Mayfield, M. M., Boni, M. F., Daily, G. C. & Ackerly, D. Species and functional diversity of native and human-dominated plant communities. Ecology 86, 2365–2372 (2005).

    Article 

    Google Scholar 

  • Tsianou, M. A. & Kallimanis, A. S. Different species traits produce diverse spatial functional diversity patterns of amphibians. Biodivers. Conserv. 25, 117–132 (2016).

    Article 

    Google Scholar 

  • Gregory, R. D., Skorpilova, J., Vorisek, P. & Butler, S. An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol. Indic. 103, 676–687 (2019).

    Article 

    Google Scholar 

  • Peña, R. et al. Biodiversity components mediate the response to forest loss and the effect on ecological processes of plant–frugivore assemblages. Funct. Ecol. 34, 1257–1267 (2020).

    Article 

    Google Scholar 

  • Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta-analysis. J. Appl. Ecol. 51, 1669–1679 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Horák, J. et al. Green desert?: Biodiversity patterns in forest plantations. For. Ecol. Manage. 433, 343–348 (2019).

    Article 

    Google Scholar 

  • Ameztegui, A. et al. Bird community response in mountain pine forests of the Pyrenees managed under a shelterwood system. For. Ecol. Manage. 407, 95–105 (2017).

    Article 

    Google Scholar 

  • Basile, M., Balestrieri, R., de Groot, M., Flajšman, K. & Posillico, M. Conservation of birds as a function of forestry. Ital. J. Agron. 11, 42–48 (2016).

    Google Scholar 

  • Uezu, A. & Metzger, J. P. Vanishing bird species in the Atlantic Forest: Relative importance of landscape configuration, forest structure and species characteristics. Biodivers. Conserv. 20, 3627–3643 (2011).

    Article 

    Google Scholar 

  • Endenburg, S. et al. The homogenizing influence of agriculture on forest bird communities at landscape scales. Landsc. Ecol. 34, 1–15 (2019).

    Article 

    Google Scholar 

  • Reif, J. et al. Changes in bird community composition in the Czech Republic from 1982 to 2004: Increasing biotic homogenization, impacts of warming climate, but no trend in species richness. J. Ornithol. 154, 359–370 (2013).

    Article 

    Google Scholar 

  • Morelli, F. et al. Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob. Ecol. Biogeogr. 25, 1284–1293 (2016).

    Article 

    Google Scholar 

  • Devictor, V., Julliard, R., Couvet, D., Lee, A. & Jiguet, F. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 21, 741–751 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Doxa, A., Paracchini, M. L., Pointereau, P., Devictor, V. & Jiguet, F. Preventing biotic homogenization of farmland bird communities: The role of High Nature Value farmland. Agric. Ecosyst. Environ. 148, 83–88 (2012).

    Article 

    Google Scholar 

  • Van Turnhout, C. A. M., Foppen, R. P. B., Leuven, R. S. E. W., Siepel, H. & Esselink, H. Scale-dependent homogenization: Changes in breeding bird diversity in the Netherlands over a 25-year period. Biol. Conserv. 134, 505–516 (2007).

    Article 

    Google Scholar 

  • Clavero, M. & Brotons, L. Functional homogenization of bird communities along habitat gradients: Accounting for niche multidimensionality. Glob. Ecol. Biogeogr. 19, 684–696 (2010).

    Google Scholar 

  • Gustafsson, L. et al. Retention as an integrated biodiversity conservation approach for continuous-cover forestry in Europe. Ambio 49, 85–97 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Lelli, C. et al. Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For. Ecol. Manage. 432, 707–717 (2019).

    Article 

    Google Scholar 

  • Aquilué, N., Messier, C., Martins, K. T., Dumais-Lalonde, V. & Mina, M. A simple-to-use management approach to boost adaptive capacity of forests to global uncertainty. For. Ecol. Manage. 481, (2021).

  • Manes, F., Ricotta, C., Salvatori, E., Bajocco, S. & Blasi, C. A multiscale analysis of canopy structure in Fagus sylvatica L. and Quercus cerris L. old-growth forests in the Cilento and Vallo di Diano National Park. Plant Biosyst. 144, 202–210 (2010).

    Article 

    Google Scholar 

  • Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Kirsch, J.-J. et al. The use of water-filled tree holes by vertebrates in temperate forests. Wildlife Biol. 2021, wlb.00786
    (2021).


  • Source: Ecology - nature.com

    More rain, less often

    MIT Energy Conference focuses on climate’s toughest challenges