in

Sexual selection for males with beneficial mutations

  • Charlesworth, D., Barton, N. H. & Charlesworth, B. The sources of adaptive variation. Proc. R. Soc. B Biol. Sci. 284(1855), 20162864 (1855).

    Article 
    CAS 

    Google Scholar 

  • Whitlock, M. C. Fixation of new alleles and the extinction of small populations: Drift load, beneficial alleles, and sexual selection. Evolution 54(6), 1855–1861 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites?. Science 218(4570), 384 (1982).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hadany, L. & Beker, T. Sexual selection and the evolution of obligatory sex. BMC Evol. Biol. 7(1), 245 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Clutton-Brock, T. Reproductive competition and sexual selection. Philos. Trans. R. Soc. B Biol. Sci. 372(1729), 20160310 (2017).

    Article 

    Google Scholar 

  • Taddei, F. et al. Role of mutator alleles in adaptive evolution. Nature 387(6634), 700–702 (1997).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Agrawal, A. F. & Wang, A. D. Increased transmission of mutations by low-condition females: Evidence for condition-dependent DNA repair. PLoS Biol. 6(2), e30 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Petrie, M. & Roberts, G. Sexual selection and the evolution of evolvability. Heredity 98(4), 198–205 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dugand, R. J., Kennington, W. J. & Tomkins, J. L. Evolutionary divergence in competitive mating success through female mating bias for good genes. Sci. Adv. 4(5), eaaq0369 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Siller, S. Sexual selection and the maintenance of sex. Nature 411(6838), 689–692 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Agrawal, A. F. Sexual selection and the maintenance of sexual reproduction. Nature 411(6838), 692–695 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lehtonen, J., Jennions, M. D. & Kokko, H. The many costs of sex. Trends Ecol. Evol. 27(3), 172–178 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Maynard Smith, J. What use is sex?. J. Theor. Biol. 30(2), 319–335 (1971).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) 136–179 (Aldone, 1972).

    Google Scholar 

  • Petrie, M. & Lipsitch, M. Avian polygyny is most likely in populations with high variability in heritable male fitness. Proc. R. Soc. Lond. Ser. B Biol. Sci. 256(1347), 275–280 (1994).

    ADS 
    Article 

    Google Scholar 

  • Lumley, A. J. et al. Sexual selection protects against extinction. Nature 522(7557), 470–473 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Andersson, M. Sexual Selection (Princeton University Press, 1994).

    Book 

    Google Scholar 

  • Petrie, M. Improved growth and survival of offspring of peacocks with more elaborate trains. Nature 371(6498), 598–599 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Møller, A. P. & Alatalo, R. V. Good-genes effects in sexual selection. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266(1414), 85–91 (1999).

    Article 

    Google Scholar 

  • David, P. et al. Condition-dependent signalling of genetic variation in stalk-eyed flies. Nature 406(6792), 186–188 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hale, M. L. et al. Is the peacock’s train an honest signal of genetic quality at the major histocompatibility complex?. J. Evol. Biol. 22(6), 1284–1294 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Prokop, Z. M. et al. Meta-analysis suggests choosy females get sexy sons more than “good genes”. Evolution 66(9), 2665–2673 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Kokko, H. et al. The sexual selection continuum. Proc. R. Soc. Lond. Ser. B Biol. Sci. 269(1498), 1331–1340 (2002).

    Article 

    Google Scholar 

  • Drake, J. W. et al. Rates of Spontaneous Mutation. Genetics 148(4), 1667 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Keightley, P. D. Rates and fitness consequences of new mutations in humans. Genetics 190(2), 295–304 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Haag-Liautard, C. et al. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445(7123), 82–85 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Metzgar, D. & Wills, C. Evidence for the adaptive evolution of mutation rates. Cell 101(6), 581–584 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Janetos, A. C. Strategies of female mate choice: A theoretical analysis. Behav. Ecol. Sociobiol. 7(2), 107–112 (1980).

    Article 

    Google Scholar 

  • Johnstone, R. A. & Earn, D. J. D. Imperfect female choice and male mating skew on leks of different sizes. Behav. Ecol. Sociobiol. 45(3), 277–281 (1999).

    Article 

    Google Scholar 

  • Petrie, M., Halliday, T. & Sanders, C. Peahens prefer peacocks with elaborate trains. Anim. Behav. 41(2), 323–331 (1991).

    Article 

    Google Scholar 

  • Cally, J. G., Stuart-Fox, D. & Holman, L. Meta-analytic evidence that sexual selection improves population fitness. Nat. Commun. 10(1), 2017 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kotiaho, J. S. et al. On the resolution of the lek paradox. Trends Ecol. Evol. 23(1), 1–3 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Parker, G. A., Baker, R. R. & Smith, V. G. F. The origin and evolution of gamete dimorphism and the male-female phenomenon. J. Theor. Biol. 36(3), 529–553 (1972).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parker, G. A. The sexual cascade and the rise of pre-ejaculatory (Darwinian) sexual selection, sex roles, and sexual conflict. Cold Spring Harb. Perspect. Biol. 6(10), a017509–a017509 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rowe, L. & Houle, D. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263(1375), 1415–1421 (1996).

    ADS 
    Article 

    Google Scholar 

  • Petrie, M. Evolution by sexual selection. Front. Ecol. Evol. 9, 950 (2021).

    Article 

    Google Scholar 

  • Petrie, M. & Kempenaers, B. Extra-pair paternity in birds: Explaining variation between species and populations. Trends Ecol. Evol. 13(2), 52–58 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Møller, A. P. & Cuervo, J. J. Minisatellite mutation rates increase with extra-pair paternity among birds. BMC Evol. Biol. 9(1), 100 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Anmarkrud, J. A. et al. Factors affecting germline mutations in a hypervariable microsatellite: A comparative analysis of six species of swallows (Aves: Hirundinidae). Mutat. Res. Fundam. Mol. Mech. Mutagen. 708(1), 37–43 (2011).

    CAS 
    Article 

    Google Scholar 

  • Ellegren, H. Characteristics, causes and evolutionary consequences of male-biased mutation. Proc. R. Soc. B Biol. Sci. 274(1606), 1–10 (2007).

    CAS 
    Article 

    Google Scholar 

  • Baur, J. & Berger, D. Experimental evidence for effects of sexual selection on condition-dependent mutation rates. Nat. Ecol. Evol. 4, 737–744 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Vrijenhoek, R. C. & Parker, E. D. Geographical parthenogenesis: General purpose genotypes and frozen niche variation. In Lost Sex (eds Schön, I. et al.) (Springer, Dordrecht, 2009).

    Google Scholar 

  • Reudink, M. W. et al. Evolution of song and color in island birds. Wilson J. Ornithol. 133(1), 1–10 (2021).

    Article 

    Google Scholar 

  • Iglesias-Carrasco, M. et al. Sexual selection, body mass and molecular evolution interact to predict diversification in birds. Proc. R. Soc. B Biol. Sci. 2019(286), 20190172 (1899).

    Google Scholar 

  • Earl, D. J. & Deem, M. W. Evolvability is a selectable trait. Proc. Natl. Acad. Sci. U. S. A. 101(32), 11531 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis)

    Helping cassava farmers by extending crop life