Charlesworth, D., Barton, N. H. & Charlesworth, B. The sources of adaptive variation. Proc. R. Soc. B Biol. Sci. 284(1855), 20162864 (1855).
Google Scholar
Whitlock, M. C. Fixation of new alleles and the extinction of small populations: Drift load, beneficial alleles, and sexual selection. Evolution 54(6), 1855–1861 (2000).
Google Scholar
Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: a role for parasites?. Science 218(4570), 384 (1982).
Google Scholar
Hadany, L. & Beker, T. Sexual selection and the evolution of obligatory sex. BMC Evol. Biol. 7(1), 245 (2007).
Google Scholar
Clutton-Brock, T. Reproductive competition and sexual selection. Philos. Trans. R. Soc. B Biol. Sci. 372(1729), 20160310 (2017).
Google Scholar
Taddei, F. et al. Role of mutator alleles in adaptive evolution. Nature 387(6634), 700–702 (1997).
Google Scholar
Agrawal, A. F. & Wang, A. D. Increased transmission of mutations by low-condition females: Evidence for condition-dependent DNA repair. PLoS Biol. 6(2), e30 (2008).
Google Scholar
Petrie, M. & Roberts, G. Sexual selection and the evolution of evolvability. Heredity 98(4), 198–205 (2007).
Google Scholar
Dugand, R. J., Kennington, W. J. & Tomkins, J. L. Evolutionary divergence in competitive mating success through female mating bias for good genes. Sci. Adv. 4(5), eaaq0369 (2018).
Google Scholar
Siller, S. Sexual selection and the maintenance of sex. Nature 411(6838), 689–692 (2001).
Google Scholar
Agrawal, A. F. Sexual selection and the maintenance of sexual reproduction. Nature 411(6838), 692–695 (2001).
Google Scholar
Lehtonen, J., Jennions, M. D. & Kokko, H. The many costs of sex. Trends Ecol. Evol. 27(3), 172–178 (2012).
Google Scholar
Maynard Smith, J. What use is sex?. J. Theor. Biol. 30(2), 319–335 (1971).
Google Scholar
Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) 136–179 (Aldone, 1972).
Petrie, M. & Lipsitch, M. Avian polygyny is most likely in populations with high variability in heritable male fitness. Proc. R. Soc. Lond. Ser. B Biol. Sci. 256(1347), 275–280 (1994).
Google Scholar
Lumley, A. J. et al. Sexual selection protects against extinction. Nature 522(7557), 470–473 (2015).
Google Scholar
Andersson, M. Sexual Selection (Princeton University Press, 1994).
Google Scholar
Petrie, M. Improved growth and survival of offspring of peacocks with more elaborate trains. Nature 371(6498), 598–599 (1994).
Google Scholar
Møller, A. P. & Alatalo, R. V. Good-genes effects in sexual selection. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266(1414), 85–91 (1999).
Google Scholar
David, P. et al. Condition-dependent signalling of genetic variation in stalk-eyed flies. Nature 406(6792), 186–188 (2000).
Google Scholar
Hale, M. L. et al. Is the peacock’s train an honest signal of genetic quality at the major histocompatibility complex?. J. Evol. Biol. 22(6), 1284–1294 (2009).
Google Scholar
Prokop, Z. M. et al. Meta-analysis suggests choosy females get sexy sons more than “good genes”. Evolution 66(9), 2665–2673 (2012).
Google Scholar
Kokko, H. et al. The sexual selection continuum. Proc. R. Soc. Lond. Ser. B Biol. Sci. 269(1498), 1331–1340 (2002).
Google Scholar
Drake, J. W. et al. Rates of Spontaneous Mutation. Genetics 148(4), 1667 (1998).
Google Scholar
Keightley, P. D. Rates and fitness consequences of new mutations in humans. Genetics 190(2), 295–304 (2012).
Google Scholar
Haag-Liautard, C. et al. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445(7123), 82–85 (2007).
Google Scholar
Metzgar, D. & Wills, C. Evidence for the adaptive evolution of mutation rates. Cell 101(6), 581–584 (2000).
Google Scholar
Janetos, A. C. Strategies of female mate choice: A theoretical analysis. Behav. Ecol. Sociobiol. 7(2), 107–112 (1980).
Google Scholar
Johnstone, R. A. & Earn, D. J. D. Imperfect female choice and male mating skew on leks of different sizes. Behav. Ecol. Sociobiol. 45(3), 277–281 (1999).
Google Scholar
Petrie, M., Halliday, T. & Sanders, C. Peahens prefer peacocks with elaborate trains. Anim. Behav. 41(2), 323–331 (1991).
Google Scholar
Cally, J. G., Stuart-Fox, D. & Holman, L. Meta-analytic evidence that sexual selection improves population fitness. Nat. Commun. 10(1), 2017 (2019).
Google Scholar
Kotiaho, J. S. et al. On the resolution of the lek paradox. Trends Ecol. Evol. 23(1), 1–3 (2008).
Google Scholar
Parker, G. A., Baker, R. R. & Smith, V. G. F. The origin and evolution of gamete dimorphism and the male-female phenomenon. J. Theor. Biol. 36(3), 529–553 (1972).
Google Scholar
Parker, G. A. The sexual cascade and the rise of pre-ejaculatory (Darwinian) sexual selection, sex roles, and sexual conflict. Cold Spring Harb. Perspect. Biol. 6(10), a017509–a017509 (2014).
Google Scholar
Rowe, L. & Houle, D. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263(1375), 1415–1421 (1996).
Google Scholar
Petrie, M. Evolution by sexual selection. Front. Ecol. Evol. 9, 950 (2021).
Google Scholar
Petrie, M. & Kempenaers, B. Extra-pair paternity in birds: Explaining variation between species and populations. Trends Ecol. Evol. 13(2), 52–58 (1998).
Google Scholar
Møller, A. P. & Cuervo, J. J. Minisatellite mutation rates increase with extra-pair paternity among birds. BMC Evol. Biol. 9(1), 100 (2009).
Google Scholar
Anmarkrud, J. A. et al. Factors affecting germline mutations in a hypervariable microsatellite: A comparative analysis of six species of swallows (Aves: Hirundinidae). Mutat. Res. Fundam. Mol. Mech. Mutagen. 708(1), 37–43 (2011).
Google Scholar
Ellegren, H. Characteristics, causes and evolutionary consequences of male-biased mutation. Proc. R. Soc. B Biol. Sci. 274(1606), 1–10 (2007).
Google Scholar
Baur, J. & Berger, D. Experimental evidence for effects of sexual selection on condition-dependent mutation rates. Nat. Ecol. Evol. 4, 737–744 (2020).
Google Scholar
Vrijenhoek, R. C. & Parker, E. D. Geographical parthenogenesis: General purpose genotypes and frozen niche variation. In Lost Sex (eds Schön, I. et al.) (Springer, Dordrecht, 2009).
Reudink, M. W. et al. Evolution of song and color in island birds. Wilson J. Ornithol. 133(1), 1–10 (2021).
Google Scholar
Iglesias-Carrasco, M. et al. Sexual selection, body mass and molecular evolution interact to predict diversification in birds. Proc. R. Soc. B Biol. Sci. 2019(286), 20190172 (1899).
Earl, D. J. & Deem, M. W. Evolvability is a selectable trait. Proc. Natl. Acad. Sci. U. S. A. 101(32), 11531 (2004).
Google Scholar
Source: Ecology - nature.com