in

The choice of the white clover population alters overyielding of mixtures with perennial ryegrass and chicory and underlying processes

  • 1.

    Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720. https://doi.org/10.1038/379718a0 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127. https://doi.org/10.1126/science.286.5442.1123 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Kirwan, L. et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J. Ecol. 95, 530–539. https://doi.org/10.1111/j.1365-2745.2007.01225.x (2007).

    Article 

    Google Scholar 

  • 4.

    Sturludóttir, E. et al. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass Forage Sci. 69, 229–240. https://doi.org/10.1111/gfs.12037 (2014).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Roscher, C. et al. Overyielding in experimental grassland communities – irrespective of species pool or spatial scale. Ecol. Lett. 8, 419–429. https://doi.org/10.1111/j.1461-0248.2005.00736.x (2005).

    Article 

    Google Scholar 

  • 6.

    Prieto, I. et al. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 1–5. https://doi.org/10.1038/nplants.2015.33 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Fridley, J. D. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia 132, 271–277. https://doi.org/10.1007/s00442-002-0965-x (2002).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Sanderson, M. A. et al. Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Sci. 44, 1132–1144. https://doi.org/10.2135/cropsci2004.1132 (2004).

    Article 

    Google Scholar 

  • 9.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35. https://doi.org/10.1890/04-0922 (2005).

    Article 

    Google Scholar 

  • 10.

    Spehn, E. M. et al. Ecosystem effects of biodiversity manipulations in European grasslands. Ecol. Monogr. 75, 37–63. https://doi.org/10.1890/03-4101 (2005).

    Article 

    Google Scholar 

  • 11.

    Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390. https://doi.org/10.1016/j.tree.2017.02.011 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 12.

    Brophy, C. et al. Major shifts in species’ relative abundance in grassland mixtures alongside positive effects of species diversity in yield: a continental-scale experiment. J. Ecol. 105, 1210–1222. https://doi.org/10.1111/1365-2745.12754 (2017).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Nyfeler, D. et al. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 46, 683–691. https://doi.org/10.1111/j.1365-2664.2009.01653.x (2009).

    Article 

    Google Scholar 

  • 14.

    Søegaard, K., Gierus, M., Hopkins, A. & Halling, M. Temporary grassland – challenges in the future. Grassl. Sci. Eur. 12, 27–38. https://www.europeangrassland.org/fileadmin/documents/Infos/Printed_Matter/Proceedings/EGF2007_GSE_vol12.pdf (2007).

  • 15.

    Høgh-Jensen, H., Nielsen, B. & Thamsborg, S. M. Productivity and quality, competition and facilitation of chicory in ryegrass/legume-based pastures under various nitrogen supply levels. Eur. J. Agron. 24, 247–256. https://doi.org/10.1016/j.eja.2005.10.007 (2006).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Cong, W. F., Jing, J., Rasmussen, J., Søegaard, K. & Eriksen, J. Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy. Sci. Rep. 7, 1–10. https://doi.org/10.1038/s41598-017-01632-4 (2017).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76. https://doi.org/10.1038/35083573 (2001).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Loreau, M., Sapijanskas, J., Isbell, F. & Hector, A. Niche and fitness differences relate the maintenance of diversity to ecosystem function: comment. Ecology 93, 1482–1487. https://doi.org/10.1890/11-0792.1 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 19.

    Montazeaud, G. et al. Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs. Plant Soil 424, 187–202. https://doi.org/10.1007/s11104-017-3496-2 (2018).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Vermeulen, P. J., Van Ruijven, J., Anten, N. P. & Van der Werf, W. An evolutionary game theoretical model shows the limitations of the additive partitioning method for interpreting biodiversity experiments. J. Ecol. 105, 345–353. https://doi.org/10.1111/1365-2745.12706 (2017).

    Article 

    Google Scholar 

  • 21.

    Hille Ris Lambers, J. H. R., Harpole, W. S., Tilman, D., Knops, J. & Reich, P. B. Mechanisms responsible for the positive diversity–productivity relationship in Minnesota grasslands. Ecol. Lett. 7, 661–668. https://doi.org/10.1111/j.1461-0248.2004.00623.x (2004).

  • 22.

    Marquard, E. et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90, 3290–3302. https://doi.org/10.1890/09-0069.1 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 23.

    Lüscher, A., Suter, M., Finn, J., Collins, R. & Gastal, F. Quantification of the effect of legume proportion in the sward on yield advantage and options to keep stable legume proportions (over climatic zones relevant for livestock production). HAL 7, 1–35. https://hal.archives-ouvertes.fr/hal-01611404 (2014).

  • 24.

    Roscher, C., Schumacher, J., Weisser, W. W., Schmid, B. & Schulze, E. D. Detecting the role of individual species for overyielding in experimental grassland communities composed of potentially dominant species. Oecologia 154, 535–549. https://doi.org/10.1007/s00442-007-0846-4 (2007).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Finn, J. A. et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3-year continental-scale field experiment. J. Appl. Ecol. 50, 365–375. https://doi.org/10.1111/1365-2664.12041 (2013).

    Article 

    Google Scholar 

  • 26.

    Grange, G., Finn, J. A. & Brophy, C. Plant diversity enhanced yield and mitigated drought impacts in intensively managed grassland communities. J. Appl. Ecol. 58, 1864–1875. https://doi.org/10.1111/1365-2664.13894 (2021).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. U.S.A. 104, 18123–18128. https://doi.org/10.1073/pnas.0709069104 (2007).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Marquard, E. et al. Changes in the abundance of grassland species in monocultures versus mixtures and their relation to biodiversity effects. PLoS ONE 8, e75599. https://doi.org/10.1371/journal.pone.0075599 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642. https://doi.org/10.1038/s41559-017-0325-1 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Fargione, J. et al. From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc. Royal Soc. B 274, 871–876. https://doi.org/10.1098/rspb.2006.0351 (2007).

    Article 

    Google Scholar 

  • 31.

    Grant, K., Kreyling, J., Heilmeier, H., Beierkuhnlein, C. & Jentsch, A. Extreme weather events and plant-plant interactions: shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecol. Res. 29, 991–1001. https://doi.org/10.1007/s11284-014-1187-5 (2014).

    Article 

    Google Scholar 

  • 32.

    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592. https://doi.org/10.1126/science.1217909 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Roscher, C., Schmid, B., Kolle, O. & Schulze, E. D. Complementarity among four highly productive grassland species depends on resource availability. Oecologia 181, 571–582. https://doi.org/10.1007/s00442-016-3587-4 (2016).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Frankow-Lindberg, B. E., Brophy, C., Collins, R. P. & Connolly, J. Biodiversity effects on yield and unsown species invasion in a temperate forage ecosystem. Ann. Bot. 103, 913–921. https://doi.org/10.1093/aob/mcp008 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Caradus, J. R. & Woodfield, D. R. World checklist of white clover varieties II. New Zealand J. Agric. Res. 40, 115–206. https://doi.org/10.1080/00288233.1997.9513239 (1997).

    Article 

    Google Scholar 

  • 36.

    Annicchiarico, P., Barrett, B., Brummer, E. C., Julier, B. & Marshall, A. H. Achievements and challenges in improving temperate perennial forage legumes. Crit. Rev. Plant Sci. 34, 327–380. https://doi.org/10.1080/07352689.2014.898462 (2015).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Abberton, M. T. & Marshall, A. H. Progress in breeding perennial clovers for temperate agriculture. J. Agric. Sci. 143, 117–135. https://doi.org/10.1017/S0021859605005101 (2005).

    Article 

    Google Scholar 

  • 38.

    Evans, D. R., Williams, T. A. & Mason, S. A. Contribution of white clover varieties to total sward production under typical farm management. Grass Forage Sci. 45, 129–134. https://doi.org/10.1111/j.1365-2494.1990.tb02193.x (1990).

    Article 

    Google Scholar 

  • 39.

    Hooper, D. U. & Dukes, J. S. Overyielding among plant functional groups in a long-term experiment. Ecol. Lett. 7, 95–105. https://doi.org/10.1046/j.1461-0248.2003.00555.x (2004).

    Article 

    Google Scholar 

  • 40.

    Ergon, Å. et al. Species interactions in a grassland mixture under low nitrogen fertilization and two cutting frequencies: 1. dry-matter yield and dynamics of species composition. Grass Forage Sci. 71, 667–682. https://doi.org/10.1111/gfs.12250 (2016).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Van Ruijven, J. & Berendse, F. Diversity–productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl. Acad. Sci. U.S.A. 102, 695–700. https://doi.org/10.1073/pnas.0407524102 (2005).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180. https://doi.org/10.1016/j.tree.2018.10.013 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 43.

    Annicchiarico, P. Breeding white clover for increased ability to compete with associated grasses. J. Agric. Sci. 140, 255–266. https://doi.org/10.1017/S0021859603003198 (2003).

    Article 

    Google Scholar 

  • 44.

    Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111. https://doi.org/10.1038/nature13869 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Schöb, C. et al. Intraspecific genetic diversity and composition modify species-level diversity–productivity relationships. New Phytol. 205, 720–730. https://doi.org/10.1111/nph.13043 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 46.

    Barot, S. et al. Designing mixtures of varieties for multifunctional agriculture with the help of ecology A review. Agron. Sustain. Dev. 37, 13. https://doi.org/10.1007/s13593-017-0418-x (2017).

    Article 

    Google Scholar 

  • 47.

    Van Ruijven, J. & Berendse, F. Long-term persistence of a positive plant diversity–productivity relationship in the absence of legumes. Oikos 118, 101–106. https://doi.org/10.1111/j.1600-0706.2008.17119.x (2009).

    Article 

    Google Scholar 

  • 48.

    Roscher, C. et al. A functional trait-based approach to understand community assembly and diversity–productivity relationships over 7 years in experimental grasslands. Perspect. Plant Ecol. Evol. Syst. 15, 139–149. https://doi.org/10.1016/j.ppees.2013.02.004 (2013).

    Article 

    Google Scholar 

  • 49.

    Roscher, C., Thein, S., Schmid, B. & Scherer-Lorenzen, M. Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years. J. Ecol. 96, 477–488. https://doi.org/10.1111/j.1365-2745.2008.01353.x (2008).

    Article 

    Google Scholar 

  • 50.

    Kayser, M., Müller, J. & Isselstein, J. Grassland renovation has important consequences for C and N cycling and losses. Food Energy Secur. 7, e00146. https://doi.org/10.1002/fes3.146 (2018).

    Article 

    Google Scholar 

  • 51.

    Bundessortenamt. Beschreibende Sortenliste Futtergräser Esparsette, Klee, Luzerne 2020. https://www.bundessortenamt.de/bsa/media/Files/BSL/bsl_futtergraeser_2020.pdf (2020).

  • 52.

    Rognli, O. A., Pecetti, L., Kovi, M. R. & Annicchiarico, P. Grass and legume breeding matching the future needs of European grassland farming. Grass Forage Sci. 76, 175–185. https://doi.org/10.1111/gfs.12535 (2021).

    Article 

    Google Scholar 

  • 53.

    Annicchiarico, P. et al. Do we need specific breeding for legume-based mixtures?. Adv. Agron. 157, 141–215. https://doi.org/10.1016/bs.agron.2019.04.001 (2019).

    Article 

    Google Scholar 

  • 54.

    Sampoux, J. P., Giraud, H. & Litrico, I. Which recurrent selection scheme to improve mixtures of crop species? Theoretical expectations. G3-Genes Genom. Genet. 10, 89–107. https://doi.org/10.1534/g3.120.401092 (2020).

  • 55.

    Hofer, D. et al. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 53, 1023–1034. https://doi.org/10.1111/1365-2664.12694 (2016).

    Article 

    Google Scholar 

  • 56.

    Pinheiro, J. et al. Nlme: Linear and nonlinear mixed effects models. R package version 3.1–137. https://CRAN.R-project.org/package=nlme (2018).

  • 57.

    Bartón, K. MuMIn: Multi-model inference. R package version 1.43.6. https://CRAN.R-project.org/package=MuMIn (2019).


  • Source: Ecology - nature.com

    Complex marine microbial communities partition metabolism of scarce resources over the diel cycle

    Deep learning increases the availability of organism photographs taken by citizens in citizen science programs