in

Unique high Arctic methane metabolizing community revealed through in situ 13CH4-DNA-SIP enrichment in concert with genome binning

  • 1.

    Ferrari, B. C., Winsley, T., Gillings, M. & Binnerup, S. Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat. Protoc. 3, 1261–1269 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Nichols, D. et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Gies, E. A., Konwar, K. M., Beatty, J. T. & Hallam, S. J. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol. AEM. 80, 6807–6818 (2014).

    ADS 

    Google Scholar 

  • 5.

    Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Lazar, C. S., Baker, B. J., Seitz, K. W. & Teske, A. P. Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME J. 11, 1118–1129 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Manefield, M., Whiteley, A. S., Griffiths, R. I. & Bailey, M. J. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68, 5367–5373 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Dumont, M. G. & Murrell, J. C. Stable isotope probing—Linking microbial identity to function. Nat. Rev. Microbiol. 3, 499–504 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Gadkari, P. S., McGuinness, L. R., Männistö, M. K., Kerkhof, L. J. & Häggblom, M. M. Arctic tundra soil bacterial communities active at subzero temperatures detected by stable isotope probing. FEMS Microbiol. Ecol. 96, fiz192 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Achouak, W. & el Zahar Haichar, F. Stable isotope probing of microbiota structure and function in the plant rhizosphere. Methods Mol. Biol. 2046, 233–243 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Graef, C., Hestnes, A. G., Svenning, M. M. & Frenzel, P. The active methanotrophic community in a wetland from the High Arctic. Environ. Microbiol. Rep. 3, 466–472 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    He, R. et al. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. Environ. Microbiol. 14, 1403–1419 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Martineau, C., Whyte, L. G. & Greer, C. W. Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian High Arctic. Appl. Environ. Microbiol. 76, 5773–5784 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 96, 1–63. https://doi.org/10.1016/s0065-2113(07)96005-8 (2007).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Ettwig, K. F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543–548 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Ricke, P. et al. First genome data from uncultured upland soil cluster alpha methanotrophs provide further evidence for a close phylogenetic relationship to Methylocapsa acidiphila B2 and for high-affinity methanotrophy involving particulate methane monooxygenase. Appl. Environ. Microbiol. 71, 7472–7482 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front. Microbiol. 6, 1346 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Jørgensen, C. J., Johansen, K. M. L., Westergaard-Nielsen, A. & Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci. 8, 20–23 (2015).

    ADS 

    Google Scholar 

  • 20.

    Emmerton, C. A. et al. The net exchange of methane with high Arctic landscapes during the summer growing season. Biogeosciences 11, 3095–3106 (2014).

    ADS 

    Google Scholar 

  • 21.

    Martineau, C. et al. Atmospheric methane oxidizers are present and active in Canadian high Arctic soils. FEMS Microbiol. Ecol. 89, 257–269 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Christiansen, J. R. et al. Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry 122, 15–33 (2015).

    CAS 

    Google Scholar 

  • 23.

    Lau, M. et al. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 9, 1880–1891 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Altshuler, I. et al. Species interactions and distinct microbial communities in high Arctic permafrost affected cryosols are associated with the CH4 and CO2 gas fluxes. Environ. Microbiol. 21, 3711–3727 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Holmes, A. J. et al. Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl. Environ. Microbiol. 65, 3312–3318 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Kolb, S., Knief, C., Dunfield, P. F. & Conrad, R. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils. Environ. Microbiol. 7, 1150–1161 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Pratscher, J., Vollmers, J., Wiegand, S., Dumont, M. G. & Kaster, A. K. Unravelling the identity, metabolic potential and global biogeography of the atmospheric methane-oxidizing upland soil cluster α. Environ. Microbiol. 20, 1016–1029 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Tveit, A. T. et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl. Acad. Sci. 116, 8515–8524 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Cai, Y., Zheng, Y., Bodelier, P. L., Conrad, R. & Jia, Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 7, 11728 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Curry, C. The consumption of atmospheric methane by soil in a simulated future climate. Biogeosciences 6, 2355–2367 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Stackhouse, B. T. et al. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J. Geophys. Res. Biogeosci. 120, 1764–1784 (2015).

    CAS 

    Google Scholar 

  • 32.

    Collier, S. M., Ruark, M. D., Oates, L. G., Jokela, W. E. & Dell, C. J. Measurement of greenhouse gas flux from agricultural soils using static chambers. J. Vis. Exp. JoVE 90, 52110 (2014).

    Google Scholar 

  • 33.

    Nadkarni, M. A., Martin, F. E., Jacques, N. A. & Hunter, N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148, 257–266 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Martineau, C., Whyte, L. G. & Greer, C. W. Development of a SYBR safe™ technique for the sensitive detection of DNA in cesium chloride density gradients for stable isotope probing assays. J. Microbiol. Methods 73, 199–202 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    McDonald, I. R., Bodrossy, L., Chen, Y. & Murrell, J. C. Molecular ecology techniques for the study of aerobic methanotrophs. Appl. Environ. Microbiol. 74, 1305–1315 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner (Lawrence Berkeley National Lab. (LBNL), Berkeley, 2014).

    Google Scholar 

  • 40.

    Li, F., Zhu, R., Bao, T., Wang, Q. & Xu, H. Sunlight stimulates methane uptake and nitrous oxide emission from the High Arctic tundra. Sci. Total Environ. 572, 1150–1160 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Rodriguez-R, L. M. et al. The Microbial Genomes Atlas (MiGA) webserver: Taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 46, W282–W288 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).

    CAS 

    Google Scholar 

  • 45.

    Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132–e132 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).

    Google Scholar 

  • 47.

    Huntemann, M. et al. The standard operating procedure of the DOE-JGI microbial genome annotation pipeline (MGAP v. 4). Stand. Genom. Sci. 10, 86 (2015).

    Google Scholar 

  • 48.

    Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v. 4). Stand. Genom. Sci. 11, 17 (2016).

    Google Scholar 

  • 49.

    Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Holm, L. Using Dali for Protein Structure Comparison. In Structural Bioinformatics. Methods in Molecular Biology. (ed. Gáspári Z.) vol 2112 (Humana, New York, 2020) https://doi.org/10.1007/978-1-0716-0270-6_3.

  • 51.

    Yang, J. et al. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods 12, 7 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Wen, X., Yang, S. & Liebner, S. Evaluation and update of cutoff values for methanotrophic pmoA gene sequences. Arch. Microbiol. 198, 629–636 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Shrestha, P. M., Kammann, C., Lenhart, K., Dam, B. & Liesack, W. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil. ISME J. 6, 1115–1126 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Tremblay, J. & Yergeau, E. Systematic processing of ribosomal RNA gene amplicon sequencing data. GigaScience 8, giz146 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Fish, J. A. et al. FunGene: The functional gene pipeline and repository. Front. Microbiol. 4, 291 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Konstantinidis, K. T. & Tiedje, J. M. Towards a genome-based taxonomy for prokaryotes. J. Bacteriol. 187, 6258–6264 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Doxey, A. C., Mansfield, M. J. & Montecucco, C. Discovery of novel bacterial toxins by genomics and computational biology. Toxicon 147, 2–12 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Pearson, W. R. An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinform. 42, 1–8 (2013).

    Google Scholar 

  • 59.

    Sachs, T., Giebels, M., Boike, J. & Kutzbach, L. Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the Lena river delta, Siberia. Glob. Change Biol. 16, 3096–3110 (2010).

    Google Scholar 

  • 60.

    Brummell, M. E., Farrell, R. E., Hardy, S. P. & Siciliano, S. D. Greenhouse gas production and consumption in High Arctic deserts. Soil Biol. Biochem. 68, 158–165 (2014).

    CAS 

    Google Scholar 

  • 61.

    Allan, J. et al. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils. Environ. Microbiol. Rep. 6, 136–144 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Natali, S. M. et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. Biogeosci. 120, 525–537 (2015).

    CAS 

    Google Scholar 

  • 63.

    Qiu, Q., Noll, M., Abraham, W.-R., Lu, Y. & Conrad, R. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. ISME J. 2, 602–614 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Esson, K. C. et al. Alpha-and gammaproteobacterial methanotrophs codominate the active methane-oxidizing communities in an acidic boreal peat bog. Appl. Environ. Microbiol. 82, 2363–2371 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Kolb, S., Knief, C., Stubner, S. & Conrad, R. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl. Environ. Microbiol. 69, 2423–2429 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Knief, C., Lipski, A. & Dunfield, P. F. Diversity and activity of methanotrophic bacteria in different upland soils. Appl. Environ. Microbiol. 69, 6703–6714 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Belova, S. E., Danilova, O. V., Ivanova, A. A., Merkel, A. Y. & Dedysh, S. N. Methane-oxidizing communities in lichen-dominated forested tundra are composed exclusively of high-affinity USCα methanotrophs. Microorganisms 8, 2047 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 68.

    Hirayama, H. et al. Methylomarinovum caldicuralii gen. nov., sp. Nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int. J. Syst. Evol. Microbiol. 64, 989–999 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Graham, D. W., Chaudhary, J. A., Hanson, R. S. & Arnold, R. G. Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microb. Ecol. 25, 1–17 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • 70.

    Macalady, J. L., McMillan, A. M., Dickens, A. F., Tyler, S. C. & Scow, K. M. Population dynamics of type I and II methanotrophic bacteria in rice soils. Environ. Microbiol. 4, 148–157 (2002).

    PubMed 

    Google Scholar 

  • 71.

    Morris, B. E., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: Interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Zarzycki, J. & Fuchs, G. Coassimilation of organic substrates via the autotrophic 3-hydroxypropionate bi-cycle in Chloroflexus aurantiacus. Appl. Environ. Microbiol. 77, 6181–6188 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Ward, L. M. et al. Genomic evidence for phototrophic oxidation of small alkanes in a member of the chloroflexi phylum. bioRxiv 531582 (2019) https://doi.org/10.1101/531582.

  • 74.

    Khadem, A. F. et al. Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J. Bacteriol. 193, 4438–4446 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Rasigraf, O., Kool, D. M., Jetten, M. S., Damsté, J. S. S. & Ettwig, K. F. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl. Environ. Microbiol. 80, 2451–2460 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Kalyuzhnaya, M. G., Gomez, O. A., Murrell J. C. The Methane-Oxidizing Bacteria (Methanotrophs). In: McGenity T. (eds) Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-030-14796-9_10 (2019).

  • 77.

    Contin, M., Rizzardini, C. B., Catalano, L. & De Nobili, M. Contamination by mercury affects methane oxidation capacity of aerobic arable soils. Geoderma 189, 250–256 (2012).

    ADS 

    Google Scholar 

  • 78.

    Boden, R. & Murrell, J. C. Response to mercury (II) ions in Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 324, 106–110 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Yan, X., Chu, F., Puri, A. W., Fu, Y. & Lidstrom, M. E. Electroporation-based genetic manipulation in type I methanotrophs. Appl. Environ. Microbiol. AEM 82, 2062–2069 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 80.

    Strong, P. J. et al. The opportunity for high-performance biomaterials from methane. Microorganisms 4, 11 (2016).

    PubMed Central 

    Google Scholar 

  • 81.

    Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe (III) reduction. ISME J. 12, 1929–1939 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Iguchi, H., Yurimoto, H. & Sakai, Y. Soluble and particulate methane monooxygenase gene clusters of the type I methanotroph Methylovulum miyakonense HT12. FEMS Microbiol. Lett. 312, 71–76 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 83.

    Semrau, J. D. et al. Methanobactin and MmoD work in concert to act as the ‘copper-switch’in methanotrophs. Environ. Microbiol. 15, 3077–3086 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 84.

    Csaki, R., Bodrossy, L., Klem, J., Murrell, J. C. & Kovacs, K. L. Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): Cloning, sequencing and mutational analysis. Microbiology 149, 1785–1795 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Lund, J., Woodland, M. P. & Dalton, H. Electron transfer reactions in the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur. J. Biochem. 147, 297–305 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Lund, J. & Howard, D. Further characterisation of the FAD and Fe2S2 redox centres of component C, the NADH: Acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur. J. Biochem. 147, 291–296 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • 87.

    Teufel, R. et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl. Acad. Sci. 107, 14390–14395 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Katayama, T. et al. Phylogenetic analysis of bacteria preserved in a permafrost ice wedge for 25,000 years. Appl. Environ. Microbiol. 73, 2360–2363 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Scanlan, J., Dumont, M. G. & Murrell, J. C. Involvement of MmoR and MmoG in the transcriptional activation of soluble methane monooxygenase genes in Methylosinus trichosporium OB3b. FEMS Microbiol. Lett. 301, 181–187 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 90.

    Ali, H. & Murrell, J. C. Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath. Microbiology 155, 761–771 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 91.

    Yu, Z., Groom, J., Zheng, Y., Chistoserdova, L. & Huang, J. Synthetic methane-consuming communities from a natural lake sediment. MBio 10, e01072-01019 (2019).

    Google Scholar 

  • 92.

    Tarlera, S. & Denner, E. B. Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the β-Proteobacteria. Int. J. Syst. Evol. Microbiol. 53, 1085–1091 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 93.

    Beller, H. R. et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans. J. Bacteriol. 188, 1473–1488 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    Kojima, H. & Fukui, M. Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol. 60, 2862–2866 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 95.

    Boden, R., Hutt, L. P. & Rae, A. W. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov. Transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and 4 new families within the orders Nitrosomonadales and Rhodocyclales. Int. J. Syst. Evol. Microbiol. 67, 1191–1205 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 96.

    Yoon, S., Cruz-García, C., Sanford, R., Ritalahti, K. M. & Löffler, F. E. Denitrification versus respiratory ammonification: Environmental controls of two competing dissimilatory NO3/NO2 reduction pathways in Shewanella loihica strain PV-4. ISME J. 9, 1093 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 97.

    Bonin, P. Anaerobic nitrate reduction to ammonium in two strains isolated from coastal marine sediment: A dissimilatory pathway. FEMS Microbiol. Ecol. 19, 27–38 (1996).

    CAS 

    Google Scholar 

  • 98.

    Tiedje, J. M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol. Anaerob. Microorg. 717, 179–244 (1988).

    Google Scholar 

  • 99.

    Stein, L. Y. & Klotz, M. G. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem. Soc. Trans. 39, 1826–1831 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 100.

    Tays, C., Guarnieri, M. T., Sauvageau, D. & Stein, L. Y. Combined effects of carbon and nitrogen source to optimize growth of proteobacterial methanotrophs. Front. Microbiol. 9, 2239 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    van den Berg, E. M., Boleij, M., Kuenen, J. G., Kleerebezem, R. & van Loosdrecht, M. DNRA and denitrification coexist over a broad range of acetate/N-NO3 ratios, in a chemostat enrichment culture. Front. Microbiol. 7, 1842 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 102.

    Edwards, C. R. et al. Draft genome sequence of uncultured upland soil cluster Gammaproteobacteria gives molecular insights into high-affinity methanotrophy. Genome Announc. 5, e00047-e117 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 104.

    Gupta, V., Smemo, K. A., Yavitt, J. B. & Basiliko, N. Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP. Microb. Ecol. 63, 438–445 (2012).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Complex marine microbial communities partition metabolism of scarce resources over the diel cycle

    Deep learning increases the availability of organism photographs taken by citizens in citizen science programs