in

Urban tropical forest islets as hotspots of ants in general and invasive ants in particular

  • Losey, J. E. & Vaughan, M. The economic value of ecological services provided by insects. Bioscience 56, 311–323 (2006).

    Article 

    Google Scholar 

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1–6 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. 109, 16083–16088 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Petersen, H. & Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288–388 (1982).

    Article 

    Google Scholar 

  • Frizzo, T. L., Souza, L. M., Sujii, E. R. & Togni, P. H. Ants provide biological control on tropical organic farms influenced by local and landscape factors. Biol. Control 151, 104378 (2020).

    CAS 
    Article 

    Google Scholar 

  • Elizalde, L. et al. The ecosystem services provided by social insects: Traits, management tools and knowledge gaps. Biol. Rev. 95, 1418–1441 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Zhong, Z. et al. Soil engineering by ants facilitates plant compensation for large herbivore removal of aboveground biomass. Ecology 102, e03312 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Ortiz, D. P., Elizalde, L. & Pirk, G. I. Role of ants as dispersers of native and exotic seeds in an understudied dryland. Ecol. Entomol. 46, 626–636 (2021).

    Article 

    Google Scholar 

  • Li, X. et al. A facilitation between large herbivores and ants accelerates litter decomposition by modifying soil microenvironmental conditions. Funct. Ecol. 35, 1822–1832 (2021).

    Article 

    Google Scholar 

  • Wendt, C. F. et al. Local environmental variables are key drivers of ant taxonomic and functional beta-diversity in a Mediterranean dryland. Sci. Rep. 11, 1–10 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Lach, L. Invasive ant establishment, spread, and management with changing climate. Curr. Opin. Insect Sci. 47, 119–124 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Buczkowski, G. & Richmond, D. S. The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity. PLoS ONE 7, e41729 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Holway, D. A. & Suarez, A. V. Homogenization of ant communities in mediterranean California: The effects of urbanization and invasion. Biol. Conserv. 127, 319–326 (2006).

    Article 

    Google Scholar 

  • Miguelena, J. G. & Baker, P. B. Effects of urbanization on the diversity, abundance, and composition of ant assemblages in an arid city. Environ. Entomol. 48, 836–846 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Nielsen, A. B., van den Bosch, M., Maruthaveeran, S. & van den Bosch, C. K. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 17, 305–327 (2014).

    Article 

    Google Scholar 

  • Clarke, K. M., Fisher, B. L. & LeBuhn, G. The influence of urban park characteristics on ant (Hymenoptera, Formicidae) communities. Urban Ecosyst. 11, 317–334 (2008).

    Article 

    Google Scholar 

  • Peng, M.-H., Hung, Y.-C., Liu, K.-L. & Neoh, K.-B. Landscape configuration and habitat complexity shape arthropod assemblage in urban parks. Sci. Rep. 10, 16043 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Santos, M. N., Delabie, J. H. & Queiroz, J. M. Biodiversity conservation in urban parks: A study of ground-dwelling ants (Hymenoptera: Formicidae) in Rio de Janeiro City. Urban Ecosyst. 22, 927–942 (2019).

    Article 

    Google Scholar 

  • McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).

    Article 

    Google Scholar 

  • Lahr, E. C., Dunn, R. R. & Frank, S. D. Getting ahead of the curve: Cities as surrogates for global change. Proc. R. Soc. B Biol. Sci. 285, 20180643 (2018).

    Article 
    CAS 

    Google Scholar 

  • Abdel-Dayem, M. S. et al. Ant diversity and composition patterns along the urbanization gradients in an arid city. J. Nat. Hist. 55, 2521–2547 (2021).

    Article 

    Google Scholar 

  • Nooten, S. S., Lee, R. H. & Guénard, B. Evaluating the conservation value of sacred forests for ant taxonomic, functional and phylogenetic diversity in highly degraded landscapes. Biol. Conserv. 261, 109286 (2021).

    Article 

    Google Scholar 

  • Bhagwat, S. A. & Rutte, C. Sacred groves: Potential for biodiversity management. Front. Ecol. Environ. 4, 519–524 (2006).

    Article 

    Google Scholar 

  • Ballullaya, U. P. et al. Stakeholder motivation for the conservation of sacred groves in south India: An analysis of environmental perceptions of rural and urban neighbourhood communities. Land Use Policy 89, 104213 (2019).

    Article 

    Google Scholar 

  • Lowman, M. D. & Sinu, P. A. Can the spiritual values of forests inspire effective conservation?. Bioscience 67, 688–690 (2017).

    Article 

    Google Scholar 

  • Rajesh, T. P., Ballullaya, U. P., Unni, A. P., Parvathy, S. & Sinu, P. A. Interactive effects of urbanization and year on invasive and native ant diversity of sacred groves of South India. Urban Ecosyst. 23, 1335–1348 (2020).

    Article 

    Google Scholar 

  • Rajesh, T. P., Unni, A. P., Ballullaya, U. P., Manoj, K. & Sinu, P. A. An insight into the quality of sacred groves–an island habitat–using leaf-litter ants as an indicator in a context of urbanization. J. Trop. Ecol. 37, 82–90 (2021).

    Article 

    Google Scholar 

  • Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).

    Article 

    Google Scholar 

  • Plowes, R. M., Dunn, J. G. & Gilbert, L. E. The urban fire ant paradox: Native fire ants persist in an urban refuge while invasive fire ants dominate natural habitats. Biol. Invasions 9, 825–836 (2007).

    Article 

    Google Scholar 

  • Rajesh, T. P., Ballullaya, U. P., Surendran, P. & Sinu, P. A. Ants indicate urbanization pressure in sacred groves of southwest India: A pilot study. Curr. Sci. 113, 317–322 (2017).

    Article 

    Google Scholar 

  • Wetterer, J. K. Worldwide distribution and potential spread of the long-legged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology 45, 77–97 (2005).

    Google Scholar 

  • Bhagwat, S. A., Kushalappa, C. G., Williams, P. H. & Brown, N. D. A landscape approach to biodiversity conservation of sacred groves in the Western Ghats of India. Conserv. Biol. 19, 1853–1862 (2005).

    Article 

    Google Scholar 

  • Chandrashekara, U. M. & Sankar, S. Ecology and management of sacred groves in Kerala, India. For. Ecol. Manag. 112, 165–177 (1998).

    Article 

    Google Scholar 

  • Asha, G., Navya, K. K., Rajesh, T. P. & Sinu, P. A. Roller dung beetles of dung piles suggest habitats are alike, but that of guarding pitfall traps suggest habitats are different. J. Trop. Ecol. 37, 209–213 (2021).

    Article 

    Google Scholar 

  • Manoj, K. et al. Diversity of Platygastridae in leaf litter and understory layers of tropical rainforests of the Western Ghats Biodiversity Hotspot, India. Environ. Entomol. 46, 685–692 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hariraveendra, M., Rajesh, T. P., Unni, A. P. & Sinu, P. A. Prey–predator interaction suggests sacred groves are not functionally different from neighbouring used lands. J. Trop. Ecol. 36, 220–224 (2020).

    Article 

    Google Scholar 

  • Bingham, C. T. The fauna of British India, including Ceylon and Burma. Hymenoptera, Vol. II. Ants and Cuckoo-wasps. (1903).

  • Bolton, B. Identification Guide to the Ant Genera of the World (Harvard University Press, 1994).

    Google Scholar 

  • Bellow, J. G. & Nair, P. K. R. Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agric. For. Meteorol. 114, 197–211 (2003).

    ADS 
    Article 

    Google Scholar 

  • Dobson, A. J. & Barnett, A. G. An Introduction to Generalized Linear Models (Chapman and Hall/CRC, 2018).

    MATH 

    Google Scholar 

  • Fox, J. et al. Package ‘car’, Vol. 16, (R Foundation for Statistical Computing, 2012).

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  • Kim, T. N., Savannah, B., Bill, D. W., Douglas, A. L. & Claudio, G. Disturbance differentially affects alpha and beta diversity of ants in tallgrass prairies. Ecosphere 9, e02399 (2018).

    Article 

    Google Scholar 

  • Hartig, F. & Hartig, M. F. Package ‘DHARMa’. R package (2017).

  • Nash, J. C. On best practice optimization methods in R. J. Stat. Softw. 60, 1–14 (2014).

    Article 

    Google Scholar 

  • Berman, M., Andersen, A. N. & Ibanez, T. Invasive ants as back-seat drivers of native ant diversity decline in New Caledonia. Biol. Invasions 15, 2311–2331 (2013).

    Article 

    Google Scholar 

  • Melliger, R. L., Braschler, B., Rusterholz, H.-P. & Baur, B. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders. PLoS ONE 13, e0199245 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Guénard, B., Cardinal-De Casas, A. & Dunn, R. R. High diversity in an urban habitat: Are some animal assemblages resilient to long-term anthropogenic change?. Urban Ecosyst. 18, 449–463 (2015).

    Article 

    Google Scholar 

  • Slipinski, P., Zmihorski, M. & Czechowski, W. Species diversity and nestedness of ant assemblages in an urban environment. Eur. J. Entomol. 109, 197 (2012).

    Article 

    Google Scholar 

  • Heterick, B. E., Lythe, M. & Smithyman, C. Urbanisation factors impacting on ant (Hymenoptera: Formicidae) biodiversity in the Perth metropolitan area, Western Australia: Two case studies. Urban Ecosyst. 16, 145–173 (2013).

    Article 

    Google Scholar 

  • Theodorou, P. et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat. Commun. 11, 1–13 (2020).

    Article 
    CAS 

    Google Scholar 

  • Goodman, M. & Warren, R. J. II. Non-native ant invader displaces native ants but facilitates non-predatory invertebrates. Biol. Invasions 21, 2713–2722 (2019).

    Article 

    Google Scholar 

  • Philpott, S. M. & Armbrecht, I. Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol. Entomol. 31, 369–377 (2006).

    Article 

    Google Scholar 

  • Philpott, S. M., Perfecto, I. & Vandermeer, J. Effects of management intensity and season on arboreal ant diversity and abundance in coffee agroecosystems. Biodivers. Conserv. 15, 139–155 (2006).

    Article 

    Google Scholar 

  • García-Cárdenas, R., Montoya-Lerma, J. & Armbrecht, I. Ant diversity under three coverages in a Neotropical coffee landscape. Rev. Biol. Trop. 66, 1373–1389 (2018).

    Article 

    Google Scholar 

  • Sinu, P. A. et al. Invasive ant (Anoplolepis gracilipes) disrupts pollination in pumpkin. Biol. Invasions 19, 2599–2607 (2017).

    Article 

    Google Scholar 

  • Tsang, T. P., Dyer, E. E. & Bonebrake, T. C. Alien species richness is currently unbounded in all but the most urbanized bird communities. Ecography 42, 1426–1435 (2019).

    Article 

    Google Scholar 

  • D’ettorre, P. Invasive eusocieties: commonalities between ants and humans. In Human Dispersal and Species Movement (eds Boivin, N. et al.) (Cambridge University Press, 2017).

    Google Scholar 

  • Wetterer, J. K. Worldwide spread of the longhorn crazy ant, Paratrechina longicornis (Hymenoptera: Formicidae). Myrmecol. News 11, 137–149 (2008).

    Google Scholar 

  • Lizon à l’Allemand, S. & Witte, V. sophisticated, modular communication contributes to ecological dominance in the invasive ant Anoplolepis gracilipes. Biol. invasions 12, 3551–3561 (2010).

    Article 

    Google Scholar 

  • Silverman, J. & Buczkowski, G. Behaviours mediating ant invasions. In Biological Invasions and Animal Behaviour (eds Weis, J. S. & Sol, D.) (Cambridge University Press, 2016).

    Google Scholar 


  • Source: Ecology - nature.com

    The influence and acting pattern of China's national carbon emission trading scheme on regional ecologicalization efficiency of industry

    Free hand hitting of stone-like objects in wild gorillas