Mayr, E. Systematics and the Origin of Species, from the Viewpoint of a Zoologist (Harvard University Press, 1942).
Ostevik, K. L., Andrew, R. L., Otto, S. P. & Rieseberg, L. H. Multiple reproductive barriers separate recently diverged sunflower ecotypes. Evolution 70, 2322–2335 (2016).
Google Scholar
Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014).
Google Scholar
Cheng, J. & Sha, Z.-L. Cryptic diversity in the Japanese mantis shrimp (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization. Sci. Rep. 7, 1972 (2017).
Google Scholar
Michaloudi, E. et al. Reverse taxonomy applied to the Brachionus calyciflorus cryptic species complex: Morphometric analysis confirms species delimitations revealed by molecular phylogenetic analysis and allows the (re)description of four species. PLoS ONE 13, e0203168 (2018).
Google Scholar
Zhang, W. & Declerck, S. A. J. Intrinsic postzygotic barriers constrain cross-fertilisation between two hybridising sibling rotifer species of the Brachionus calyciflorus species complex. Freshw. Biol. 67, 240–249 (2022).
Google Scholar
Zhang, W. & Declerck, S. A. J. Reduced fertilization constitutes an important prezygotic reproductive barrier between two sibling species of the hybridizing Brachionus calyciflorus species complex. Hydrobiologia 849, 1701–1711 (2022).
Google Scholar
Seehausen, O., van Alphen, J. J. M. & Witte, F. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277, 1808–1811 (1997).
Google Scholar
Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).
Google Scholar
Gill, B. A. et al. Cryptic species diversity reveals biogeographic support for the ’mountain passes are higher in the tropics’ hypothesis. Proc. R. Soc. B. 283, 20160553 (2016).
Google Scholar
Sáez, A. G. & Lozano, E. Body doubles. Nature 433, 111 (2005).
Google Scholar
Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).
Google Scholar
Mills, S. et al. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796, 39–58 (2017).
Google Scholar
Struck, T. H. et al. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 33, 153–163 (2018).
Google Scholar
Leibold, M. A. & McPeek, M. A. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87, 1399–1410 (2006).
Google Scholar
Gabaldón, C., Fontaneto, D., Carmona, M. J., Montero-Pau, J. & Serra, M. Ecological differentiation in cryptic rotifer species: What we can learn from the Brachionus plicatilis complex. Hydrobiologia 796, 7–18 (2017).
Google Scholar
Nicholls, B. & Racey, P. A. Contrasting home-range size and spatial partitioning in cryptic and sympatric pipistrelle bats. Behav. Ecol. Sociobiol. 61, 131–142 (2006).
Google Scholar
Ortells, R., Gómez, A. & Serra, M. Coexistence of cryptic rotifer species: Ecological and genetic characterisation of Brachionus plicatilis. Freshw. Biol. 48, 2194–2202 (2003).
Google Scholar
Wellborn, G. A. & Cothran, R. D. Niche diversity in crustacean cryptic species: Complementarity in spatial distribution and predation risk. Oecologia 154, 175–183 (2007).
Google Scholar
Gause, G. F. The struggle for existence (Williams and Wilkins, 1934).
Google Scholar
Segers, H. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595, 49–59 (2008).
Google Scholar
Fontaneto, D. Molecular phylogenies as a tool to understand diversity in rotifers. Int. Rev. Hydrobiol. 99, 178–187 (2014).
Google Scholar
Papakostas, S. et al. Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: Evidence from a rotifer cryptic species complex. Syst. Biol. 65, 508–524 (2016).
Google Scholar
García-Morales, A. E. & Elías-Gutiérrez, M. DNA barcoding of freshwater rotifera in Mexico: Evidence of cryptic speciation in common rotifers. Mol. Ecol. Resour. 13, 1097–1107 (2013).
Wang, X. L. et al. Differences in life history characteristics between two sibling species in Brachionus calyciflorus complex from tropical shallow lakes. Ann. Limnol. Int. J. Lim. 50, 289–298 (2014).
Google Scholar
Wen, X., Xi, Y., Zhang, G., Xue, Y. & Xiang, X. Coexistence of cryptic Brachionus calyciflorus (Rotifera) species: Roles of environmental variables. J. Plankton Res. 38, 478–489 (2016).
Google Scholar
Xiang, X.-L., Chen, Y.-Y., Han, Y., Wang, X.-L. & Xi, Y.-L. Comparative studies on the life history characteristics of two Brachionus calyciflorus strains belonging to the same cryptic species. Biochem. Syst. Ecol. 69, 138–144 (2016).
Google Scholar
Xiang, X.-L. et al. Patterns and processes in the genetic differentiation of the Brachionus calyciflorus complex, a passively dispersing freshwater zooplankton. Mol. Phylogenet. Evol. 59, 386–398 (2011).
Google Scholar
Xiang, X.-L. et al. Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China. Mol. Ecol. 20, 3027–3044 (2011).
Google Scholar
Gilbert, J. J. & Walsh, E. J. Brachionus calyciflorus is a species complex: Mating behavior and genetic differentiation among four geographically isolated strains. Hydrobiologia 546, 257–265 (2005).
Google Scholar
Zhang, Y. et al. Temporal patterns and processes of genetic differentiation of the Brachionus calyciflorus (Rotifera) complex in a subtropical shallow lake. Hydrobiologia 807, 313–331 (2018).
Google Scholar
Zhang, W., Lemmen, K. D., Zhou, L., Papakostas, S. & Declerck, S. A. J. Patterns of differentiation in the life history and demography of four recently described species of the Brachionus calyciflorus cryptic species complex. Freshw. Biol. 64, 1994–2005 (2019).
Google Scholar
Lemmen, K. D., Verhoeven, K. J. F. & Declerck, S. A. J. Experimental evidence of rapid heritable adaptation in the absence of initial standing genetic variation. Funct. Ecol. 36, 226–238 (2022).
Google Scholar
Paraskevopoulou, S., Dennis, A. B., Weithoff, G., Hartmann, S. & Tiedemann, R. Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto. PLoS ONE 14, e0223134 (2019).
Google Scholar
Paraskevopoulou, S., Dennis, A. B., Weithoff, G. & Tiedemann, R. Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers. Sci. Rep. 10, 13281 (2020).
Google Scholar
Paraskevopoulou, S., Tiedemann, R. & Weithoff, G. Differential response to heat stress among evolutionary lineages of an aquatic invertebrate species complex. Biol. Lett. 14, 20180498 (2018).
Google Scholar
Takemoto, K. & Akutsu, T. Origin of structural difference in metabolic networks with respect to temperature. BMC Syst. Biol. 2, 82 (2008).
Google Scholar
Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).
Google Scholar
Atkinson, D. Temperature and organism size: A biological law for ectotherms?. Adv. Ecol. Res. 25, 1–58 (1994).
Google Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).
Google Scholar
Walczyńska, A., Franch-Gras, L. & Serra, M. Empirical evidence for fast temperature-dependent body size evolution in rotifers. Hydrobiologia 796, 191–200 (2017).
Google Scholar
Brown, W. L. & Wilson, E. O. Character displacement. Syst. Zool. 5, 49–64 (1956).
Google Scholar
Marrone, F., Fontaneto, D. & Naselli-Flores, L. Cryptic diversity, niche displacement and our poor understanding of taxonomy and ecology of aquatic microorganisms. Hydrobiologia https://doi.org/10.1007/s10750-022-04904-x (2022).
Google Scholar
Pekkonen, M., Ketola, T. & Laakso, J. T. Resource availability and competition shape the evolution of survival and growth ability in a bacterial community. PLoS ONE 8, e76471 (2013).
Google Scholar
Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011).
Google Scholar
Drummond, D. A. & Wilke, C. O. The evolutionary consequences of erroneous protein synthesis. Nat. Rev. Genet. 10, 715–724 (2009).
Google Scholar
Fraser, H. B. Genome-wide approaches to the study of adaptive gene expression evolution: Systematic studies of evolutionary adaptations involving gene expression will allow many fundamental questions in evolutionary biology to be addressed. BioEssays 33, 469–477 (2011).
Google Scholar
Fraser, H. B. Gene expression drives local adaptation in humans. Genome Res. 23, 1089–1096 (2013).
Google Scholar
Franch-Gras, L. et al. Rotifer adaptation to the unpredictability of the growing season. Hydrobiologia 844, 257–273 (2019).
Google Scholar
Tarazona, E., Lucas-Lledó, J. I., Carmona, M. J. & García-Roger, E. M. Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes. Sci. Rep. 10, 21366 (2020).
Google Scholar
Smith, H. A., Burns, A. R., Shearer, T. L. & Snell, T. W. Three heat shock proteins are essential for rotifer thermotolerance. J. Exp. Mar. Biol. Ecol. 413, 1–6 (2012).
Google Scholar
Alonso, C. R. & Wilkins, A. S. The molecular elements that underlie developmental evolution. Nat. Rev. Genet. 6, 709–715 (2005).
Google Scholar
Romero, I. G., Ruvinsky, I. & Gilad, Y. Comparative studies of gene expression and the evolution of gene regulation. Nat. Rev. Genet. 13, 505–516 (2012).
Google Scholar
Franch-Gras, L. et al. Genomic signatures of local adaptation to the degree of environmental predictability in rotifers. Sci. Rep. 8, 16051 (2018).
Google Scholar
Nowell, R. W. et al. Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species. PLoS Biol. 16, e2004830 (2018).
Google Scholar
Feugeas, J.-P. et al. Links between transcription, environmental adaptation and gene variability in Escherichia coli: Correlations between gene expression and gene variability reflect growth efficiencies. Mol. Biol. Evol. 33, 2515–2529 (2016).
Google Scholar
Pai, A. A., Pritchard, J. K. & Gilad, Y. The genetic and mechanistic basis for variation in gene regulation. PLoS Genet. 11, e1004857 (2015).
Google Scholar
Gribble, K. E. & Mark Welch, D. B. The mate recognition protein gene mediates reproductive isolation and speciation in the Brachionus plicatilis cryptic species complex. BMC Evol. Biol. 12, 134 (2012).
Google Scholar
Via, S. Natural selection in action during speciation. Proc. Natl. Acad. Sci. USA. 106, 9939–9946 (2009).
Google Scholar
Ho, S. Y. W. & Duchêne, S. Molecular-clock methods for estimating evolutionary rates and timescales. Mol. Ecol. 23, 5947–5965 (2014).
Google Scholar
Yang, J., Mu, Y., Dong, S., Jiang, Q. & Yang, J. Changes in the expression of four heat shock proteins during the aging process in Brachionus calyciflorus (Rotifera). Cell Stress Chaperones 19, 33–52 (2014).
Google Scholar
Mahmood, K., Jadoon, S., Mahmood, Q., Irshad, M. & Hussain, J. Synergistic effects of toxic elements on heat shock proteins. Biomed. Res. Int. 2014, 564136 (2014).
Google Scholar
Park, J. C. et al. Genome-wide identification and structural analysis of heat shock protein gene families in the marine rotifer Brachionus spp.: Potential application in molecular ecotoxicology. Comp. Biochem. Physiol. D 36, 100749 (2020).
Santoro, M. Heat shock factors and the control of the stress response. Biochem. Pharmacol. 59, 55–63 (2000).
Google Scholar
Birky, C. W. & Gilbert, J. J. Parthenogenesis in rotifers: The control of sexual and asexual reproduction. Am. Zool. 11, 245–266 (1971).
Google Scholar
Snell, T. W. Rotifers as models for the biology of aging. Int. Rev. Hydrobiol. 99, 84–95 (2014).
Google Scholar
Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).
Google Scholar
Muller, H. J. Some genetic aspects of sex. Am. Nat. 66, 118–138 (1932).
Google Scholar
Muller, H. J. The relation of recombination to mutational advance. Mut. Res. 1, 2–9 (1964).
Google Scholar
Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744 (2004).
Google Scholar
Zhang, Y., Xu, S., Sun, C., Dumont, H. & Han, B.-P. A new set of highly efficient primers for COI amplification in rotifers. Mitochondrial DNA B 6, 636–640 (2021).
Google Scholar
Turner, C. B., Marshall, C. W. & Cooper, V. S. Parallel genetic adaptation across environments differing in mode of growth or resource availability. Evol. Lett. 2, 355–367 (2018).
Google Scholar
Lan, B. et al. Tempo-spatial variations of zooplankton communities in relation to environmental factors and the ecological implications: A case study in the hinterland of the Three Gorges Reservoir area. China. PLoS ONE 16, e0256313 (2021).
Google Scholar
Pellecchia, M., Szyperski, T., Wall, D., Georgopoulos, C. & Wüthrich, K. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. Mol. Biol. 260, 236–250 (1996).
Google Scholar
Greene, M. K., Maskos, K. & Landry, S. J. Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc. Natl. Acad. Sci. USA 95, 6108–6113 (1998).
Google Scholar
Wittung-Stafshede, P., Guidry, J., Horne, B. E. & Landry, S. J. The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry 42, 4937–4944 (2003).
Google Scholar
Cintron, N. S. & Toft, D. Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway. J. Biol. Chem. 281, 26235–26244 (2006).
Google Scholar
Li, J., Qian, X. & Sha, B. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11, 1475–1483 (2003).
Google Scholar
Sha, B., Lee, S. & Cyr, D. M. The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1. Structure 8, 799–807 (2000).
Google Scholar
Brender, J. R. & Zhang, Y. Predicting the effect of mutations on protein-protein binding interactions through structure-based interface profiles. PLoS Comput. Biol. 11, e1004494 (2015).
Google Scholar
Shortle, D. One sequence plus one mutation equals two folds. Proc. Natl. Acad. Sci. USA 106, 21011–21012 (2009).
Google Scholar
Charlesworth, B. The effects of deleterious mutations on evolution at linked sites. Genetics 190, 5–22 (2012).
Google Scholar
Cutter, A. D. A Primer of Molecular Population Genetics (Oxford University Press, 2019).
Google Scholar
Barraclough, T. G., Fontaneto, D., Ricci, C. & Herniou, E. A. Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Mol. Biol. Evol. 24, 1952–1962 (2007).
Google Scholar
Tang, C. Q., Obertegger, U., Fontaneto, D. & Barraclough, T. G. Sexual species are separated by larger genetic gaps than asexual species in rotifers. Evol. Int. J. Org. Evol. 68, 2901–2916 (2014).
Google Scholar
Brower, A. V. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. U.S.A. 91, 6491–6495 (1994).
Google Scholar
Yang, W., Deng, Z., Blair, D., Hu, W. & Yin, M. Phylogeography of the freshwater rotifer Brachionus calyciflorus species complex in China. Hydrobiologia 849, 2813–2829 (2022).
Google Scholar
Chin, T. A. & Cristescu, M. E. Speciation in Daphnia. Mol. Ecol. 30, 1398–1418 (2021).
Google Scholar
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
Google Scholar
Davidson, N. M., Hawkins, A. D. K. & Oshlack, A. SuperTranscripts: A data driven reference for analysis and visualisation of transcriptomes. Genome Biol. 18, 148 (2017).
Google Scholar
Altschul, S. F., Gish, W. P., Miller, W., Myers, E. W. & Lipman, D. L. Basic local alignment search tool. Mol. Biol. 215, 403–410 (1990).
Google Scholar
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
Google Scholar
Cock, P. J. A. et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).
Google Scholar
Suyama, M., Torrents, D. & Bork, P. PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).
Google Scholar
Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
Google Scholar
Ashburner, M. et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).
Google Scholar
Lavezzo, E., Falda, M., Fontana, P., Bianco, L. & Toppo, S. Enhancing protein function prediction with taxonomic constraints: The Argot2.5 web server. Methods 93, 15–23 (2016).
Google Scholar
The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
Google Scholar
Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29-37 (2011).
Google Scholar
Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).
Google Scholar
Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
Google Scholar
Untergasser, A. et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).
Google Scholar
Palumbi, S. R. The polymerase chain reaction. Mol. Syst. 2, 205–247 (1996).
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
Cornish-Bowden, A. Nomenclature for incompletely specified bases in nucleic acid sequences: Recommendations. Nucleic Acids Res. 39, 3021–3030 (1985).
Google Scholar
Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001).
Google Scholar
Stephens, M. & Donnelly, P. A Comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162–1169 (2003).
Google Scholar
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
Google Scholar
Kosakovsky Pond, S. L. & Frost, S. D. W. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).
Google Scholar
Weaver, S. et al. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777 (2018).
Google Scholar
Leigh, J. W. & Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
Google Scholar
Krzywinski, M. et al. Circos: An information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
Google Scholar
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Google Scholar
Galili, T. dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720 (2015).
Google Scholar
Andrew Rambaut Group. FigTree. (2022). http://tree.bio.ed.ac.uk/software/.
Inkscape Project. Inkscape. (2020). https://inkscape.org.
Wong, W. S. W., Yang, Z., Goldman, N. & Nielsen, R. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168, 1041–1051 (2004).
Google Scholar
Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).
Google Scholar
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 016 (2018).
Google Scholar
Kiemel, K., de Cahsan, B., Paraskevopoulou, S., Weithoff, G. & Tiedemann, R. Mitochondrial genomes of the freshwater monogonont rotifer Brachionus fernandoi and of two additional B. calyciflorus sensu stricto lineages from Germany and the USA (Rotifera, Brachionidae). Mitochondrial DNA B 7, 646–648 (2022).
Google Scholar
Kim, M.-S. et al. Complete mitochondrial genome of the freshwater monogonont rotifer Brachionus angularis (Rotifera, Brachionidae). Mitochondrial DNA B. 5, 3754–3755 (2020).
Kim, M.-S. et al. Complete mitochondrial genomes of two marine monogonont rotifer Brachionus manjavacas strains. Mitochondrial DNA B. 6, 1921–1923 (2021).
Google Scholar
Suga, K., Mark Welch, D. B., Tanaka, Y., Sakakura, Y. & Hagiwara, A. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis. Mol. Biol. Evol. 25, 1129–1137 (2008).
Google Scholar
Hwang, D.-S. et al. Complete mitochondrial genome of the monogonont rotifer, Brachionus koreanus (Rotifera, Brachionidae). Mitochondrial DNA B. 25, 29–30 (2014).
Google Scholar
Kim, H.-S. et al. Complete mitochondrial genome of the monogonont rotifer Brachionus rotundiformis (Rotifera, Brachionidae). Mitochondrial DNA B. 2, 39–40 (2017).
Google Scholar
Choi, B.-S. et al. Complete mitochondrial genome of the freshwater monogonont rotifer Brachionus rubens (Rotifera, Brachionidae). Mitochondrial DNA B. 5, 5–6 (2019).
Google Scholar
Choi, B.-S. et al. Complete mitochondrial genome of the marine monogonont rotifer Proales similis (Rotifera, Proalidae). Mitochondrial DNA B. 5, 1151–1152 (2020).
Google Scholar
Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).
Google Scholar
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).
Google Scholar
Source: Ecology - nature.com