Himalayan marmot habitat analysis
The environmental factors including temperature, vegetation and elevation are the key drivers for the wildlife in alpine ecosystems32. Specific landform attributes such as slope and elevation and vegetation cover affect the population and burrowing of rodents33. For example, rodent burrows in the Western Usambara Mountains in Tanzania were only found at an elevation of above 1600 m33. However, the Himalayan marmot seems to prefer to inhabit areas with low elevation and high land surface temperature34. In this study, the data showed that 76.25% of the Himalayan marmots were found in areas with elevation values of 3400–4600 m. The majority of marmots were found in areas with slopes of 5–20° and vegetation cover higher than 60%. Most marmots were found in alpine meadows, a few were found in temperate grasslands and alpine grasslands, and none were found in other grassland types.
Preliminary statistical analysis of vegetation cover, grass type, vegetation type, and Himalayan marmot distribution sample sites obtained using spatial geographic information technology revealed that the meadow grassland areas with lush grass growth, more dominant plants, and abundant food had more marmots. When the vegetation cover reached 0.60–1.00, the number of marmot distribution sample sites was the highest. Dense grass is an ideal habitat and provides concealment for Himalayan marmots, and the abundant plant types provide sufficient food for marmots. In contrast, no marmots were distributed in the alpine scrub, coniferous forest, and alpine snow/ice covered areas where vegetation growth was poor, vegetation cover was low, and food was relatively scarce. Moreover, 70.24% of Himalayan marmots were found in alpine meadows with a wide variety of plant species, including Poaceae, Cyperaceae, and grasses. This finding indicated that alpine meadows are more suitable for Himalayan marmots and have more advantageous habitat conditions compared with other grassland types. The elevation of alpine meadows is 3236–5126 m, and the vegetation is mainly meadows with simple vegetation structure, substantial vegetation cover and dense vegetation growth, and a wide variety of plants, rich food, soft grass, and good palatability. Therefore, alpine meadows provide good natural habitats and foraging sites for marmots.
Habitat selection of large rodents is influenced by a combination of vegetation cover availability, food availability, and population density35. Vegetation cover is an important parameter that describes vegetation communities and ecosystems and is closely related to vegetation quantity and productivity. The quality of habitat vegetation is an important factor that affects the spatial distribution of plateau rodents. Both feeding and concealment depend on vegetation, and the height and cover of edible plants and vegetation suitable for concealment determine the choice of vegetation type by marmots. Thus, vegetation cover becomes an important factor for habitat selection by marmots. Different grassland types determine different plant conditions, and selection of different vegetation conditions can increase the chances of survival and improve the reproductive success of marmots; therefore, grassland type is an important ecological factor in habitat selection by marmots. A study showed that the ecological factors affecting habitat selection of Himalayan marmots are mainly topography, anthropogenic disturbance, and vegetation8. Another study concluded that habitat selection by Himalayan marmots is closely related to elements such as topography, landform, temperature, precipitation, and vegetation24.
The functions of burrows’ physical parameters is to protect the Himalayan marmots from natural enemies and bad weather36. There is clearly influence of slope on habitat selection by marmots. When the slope is large, wind is strong, and burrows are not well hidden; this makes them difficult to defend against enemies, unsafe for survival, and not conducive to hibernation during winter. In addition, Himalayan marmots prefer to burrow on sunny aspect, because the temperature is suitable and the vegetation is lush, which is suitable for marmots to breed. Therefore, the number of marmot burrows gradually decreases with increasing slope and ubac. Although flat and low-lying areas with small slopes are good for marmots to create dens, rainwater will easily flow into the dens during summer rainfall, which will kill marmots. Therefore, a suitable slope and sunny aspect are also very important for habitat selection by marmots.
Application of the predictive spatial distribution map of Himalayan marmots in Qinghai province
Plague surveillance is the main measure used for plague prevention and control in China. Although we have made many improvements in plague surveillance, the traditional method of dragnet surveillance still consumes a lot of human and material resources, is inefficient. The pasture area of Qinghai province is approximately 380,000 km2, and the identified natural plague focus is approximately 180,000 km2; therefore, there is still 200,000 km2 of pasture where the distribution of Himalayan marmots and plague have not been identified. Currently, RS technology is widely used in the fields of mapping and ecological surveillance18,19,21,22,37.
Applications of RS technology in areas such as malaria, dengue, schistosomiasis and plague have been previously reported27,37. Using GIS combined with remotely sensed data, Proches Hieronimo et al. found that the presence of small mammals was positively influenced by elevation, whereas the presence of fleas was clearly influenced by land management features, and thus these observations have positive implications for plague surveillance27. In this study, RS technology combined with field validations were used to determine the distribution and areas of different types of grasslands in Qinghai province, and the average density of Himalayan marmot distribution in different types of grasslands. The high-, low-, and very low-density areas of Himalayan marmot distribution were identified. The soil map, vegetation map, administrative map, and marmot density statistics were merged to form the spatial data and attribute data basis for the information system to map the distribution of Himalayan marmot and determine the area of Himalayan marmot distribution. Generally speaking, the occurrence of human plague epidemic is closely related to the local animal plague epidemic2. However, a large part of the high-density distribution of Himalayan marmots is located in uninhabited areas and the areas are generally sparsely populated, which also indicates that we should reasonably allocate plague prevention and control resources to areas where human plague is most likely to occur to prevent the occurrence of human plague epidemics.
Field validation for verification
Through field validation and information from local farmers and herdsmen, we confirmed that Himalayan marmots inhabited 68 sample sites in Tongde, Zeku, Guinan, Xunhua, Haiyan, Ulan, Qilian, Hualong, and Huzhu counties. Among them, Tongde, Zeku, Guinan, Xunhua, Haiyan, Ulan, and Qilian counties have all historically experienced marmot plague outbreaks and can be considered as reliable natural plague foci38. The data from this field validation are consistent with the previous survey data and the epidemic history of the counties in Qinghai province39.
MAE can better reflect the actual number of errors in prediction values; the smaller the MAE value, the higher the prediction accuracy. The MAE derived from the field validation data was 0.1331 and the prediction accuracy was 0.8669. The accuracy of the predicted Himalayan marmot spatial distribution reached 87%, which indicated that the predicted probability map of the Himalayan marmot spatial distribution can better predict the potential marmot distribution.
The predicted spatial distribution map of Himalayan marmot in Qinghai province was then compared with environmental information such as elevation, vegetation, grass type, slope, and aspect of 352 field survey sites. The obtained RS data showed that the prediction results were excellent, and the predicted spatial distribution map of Himalayan marmot in Qinghai province was drawn with high accuracy. The prediction map visually reflects the different density distribution of Himalayan marmots; this allows us to optimize the settings and reasonable spatial layout of animal plague surveillance sites and improve surveillance efficiency.
Application of marmot information collection system V3.0
Marmot information collection system V3.0 was developed based on the “3S” technology standardizing the collection of surveillance data, and makes the management and analysis of information more convenient and faster. This study revolutionized the traditional method of considering plague-stricken counties as the plague foci, and effectively reduces the work intensity of operators and improves the data collection efficiency. In 2016 and 2017, we applied this system to the animal plague surveillance tasks in the plague-stricken counties of Haidong, Hainan, and Haibei in Qinghai province, and standardized the collection of provincial geographic location data of animal plague surveillance (data not shown). In 2018, we also applied this system in Wulan County, which frequently experiences plague, and achieved a good application effect (data not shown).
In the next step, we will expand the pilot areas (mainly national and provincial plague surveillance sites), collect surveillance data from each surveillance site, continuously optimize and update the system, improve the efficiency of data analysis and utilization, detect the plague epidemic in marmot in a timely and accurate manner, correctly determine the epidemic trend of plague in marmots, and attempt to strictly prevent the plague from spreading to humans. We plan to use a new model of drone surveillance to create a multidimensional, three-dimensional, real-time big data plague surveillance information reporting system to enhance early plague warnings and prediction in Qinghai province and even in the country, which will be of positive practical significance to serve and guarantee the Belt and Road Initiative. These approaches are expected to provide new technical means for plague investigation and research, and to provide references for setting up plague surveillance programs and prediction for the natural Himalayan marmot plague focus in Qinghai province and the QTP.
Source: Ecology - nature.com