in

Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink

  • Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herbert, E. R., Windham-Myers, L. & Kirwan, M. L. Sea-level rise enhances carbon accumulation in United States tidal wetlands. One Earth 4, 425–433 (2021).

    Article 
    ADS 

    Google Scholar 

  • Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).

    Article 
    ADS 

    Google Scholar 

  • Raabe, E. A. & Stumpf, R. P. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuaries Coast. 39, 145–157 (2016).

    Article 

    Google Scholar 

  • Ury, E. A., Yang, X., Wright, J. P. & Bernhardt, E. S. Rapid deforestation of a coastal landscape driven by sea-level rise and extreme events. Ecol. Appl. 31, e02339 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Mariotti, G. Revisiting salt marsh resilience to sea level rise: are ponds responsible for permanent land loss? J. Geophys. Res. Earth Surf. 121, 1391–1407 (2016).

    Article 
    ADS 

    Google Scholar 

  • Schepers, L., Brennand, P., Kirwan, M. L., Guntenspergen, G. R. & Temmerman, S. Coastal marsh degradation into ponds induces irreversible elevation loss relative to sea level in a microtidal system. Geophys. Res. Lett. 47, e2020GL089121 (2020).

    Article 
    ADS 

    Google Scholar 

  • Schieder, N. W., Walters, D. C. & Kirwan, M. L. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries Coasts 41, 940–951 (2018).

    Article 

    Google Scholar 

  • Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 17, 1111 (2003).

  • Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505–509 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article 

    Google Scholar 

  • Smart, L. S. et al. Aboveground carbon loss associated with the spread of ghost forests as sea levels rise. Environ. Res. Lett. 15, 104028 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Smith, A. J. & Kirwan, M. L. Sea level-driven marsh migration results in rapid net loss of carbon. Geophys. Res. Lett. 48, e2021GL092420 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Phang, V. X. H., Chou, L. M. & Friess, D. A. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf. Process. Landf. 40, 1387–1400 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Saavedra-Hortua, D. A., Friess, D. A., Zimmer, M. & Gillis, L. G. Sources of particulate organic matter across mangrove forests and adjacent ecosystems in different geomorphic settings. Wetlands 40, 1047–1059 (2020).

    Article 

    Google Scholar 

  • Windham-Myers, L., Crooks, S. & Troxler, T. G. A Blue Carbon Primer: The State of Coastal Wetland Carbon Science, Practice and Policy (CRC Press, 2018).

  • Donatelli, C., Kalra, T. S., Fagherazzi, S., Zhang, X. & Leonardi, N. Dynamics of marsh-derived sediments in lagoon-type estuaries. J. Geophys. Res. Earth Surf. 125, e2020JF005751 (2020).

    Article 
    ADS 

    Google Scholar 

  • Hopkinson, C. S., Morris, J. T., Fagherazzi, S., Wollheim, W. M. & Raymond, P. A. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. J. Geophys. Res. Biogeosci. 123, 2444–2465 (2018).

    Article 
    CAS 

    Google Scholar 

  • Mitchell, M. G. E., Bennett, E. M. & Gonzalez, A. Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16, 894–908 (2013).

    Article 

    Google Scholar 

  • Pearson, R. M. et al. Disturbance type determines how connectivity shapes ecosystem resilience. Sci. Rep. 11, 1188 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grande, T. O., Aguiar, L. M. S. & Machado, R. B. Heating a biodiversity hotspot: connectivity is more important than remaining habitat. Landsc. Ecol. 35, 639–657 (2020).

    Article 

    Google Scholar 

  • Olliver, E. A. & Edmonds, D. A. Hydrological connectivity controls magnitude and distribution of sediment deposition within the Deltaic Islands of Wax Lake Delta, LA, USA. J. Geophys. Res. Earth Surf. 126, e2021JF006136 (2021).

    Article 
    ADS 

    Google Scholar 

  • Ward, N. D. et al. Representing the function and sensitivity of coastal interfaces in Earth system models. Nat. Commun. 11, 2458 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wohl, E. et al. Connectivity as an emergent property of geomorphic systems. Earth Surf. Process. Landf. 44, 4–26 (2019).

    Article 
    ADS 

    Google Scholar 

  • Kirwan, M. L. & Mudd, S. M. Response of salt-marsh carbon accumulation to climate change. Nature 489, 550–553 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rietl, A. J., Megonigal, J. P., Herbert, E. R. & Kirwan, M. L. Vegetation type and decomposition priming mediate brackish marsh carbon accumulation under interacting facets of global change. Geophys. Res. Lett. 48, e2020GL092051 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kirwan, M. L., Walters, D. C., Reay, W. G. & Carr, J. A. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophys. Res. Lett. 43, 4366–4373 (2016).

    Article 
    ADS 

    Google Scholar 

  • Mariotti, G. & Fagherazzi, S. A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J. Geophys. Res. Earth Surf. 115, F01004 (2010).

  • Theuerkauf, E. J., Stephens, J. D., Ridge, J. T., Fodrie, F. J. & Rodriguez, A. B. Carbon export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a critical width threshold. Estuar. Coast. Shelf Sci. 164, 367–378 (2015).

    Article 
    CAS 

    Google Scholar 

  • Murray, A. B. Reducing model complexity for explanation and prediction. Geomorphology 90, 178–191 (2007).

    Article 
    ADS 

    Google Scholar 

  • Murray, A. B. & Paola, C. A cellular model of braided rivers. Nature 371, 54–57 (1994).

    Article 
    ADS 

    Google Scholar 

  • Mariotti, G. & Carr, J. Dual role of salt marsh retreat: long-term loss and short-term resilience. Water Resour. Res. 50, 2963–2974 (2014).

    Article 
    ADS 

    Google Scholar 

  • Mudd, S. M., Howell, S. M. & Morris, J. T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf Sci. 82, 377–389 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mudd, S. M., Fagherazzi, S., Morris, J. T. & Furbish, D. J. Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: toward a predictive model of marsh morphologic and ecologic evolution. Ecogeomorphology Tidal Marshes 59, 165–188 (2004).

  • Reeves, I. R. B. et al. Impacts of seagrass dynamics on the coupled long-term evolution of barrier-marsh-bay systems. J. Geophys. Res. Biogeosci. 125, e2019JG005416 (2020).

    Article 
    ADS 

    Google Scholar 

  • Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A. & Hopkinson, C. S. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat. Geosci. 12, 685–692 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • de Broek, M. V. et al. Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary. Glob. Change Biol. 24, 2498–2512 (2018).

    Article 
    ADS 

    Google Scholar 

  • Noyce, G. L., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proc. Natl Acad. Sci. USA 116, 21623–21628 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, A. J., Noyce, G. L., Megonigal, J. P., Guntenspergen, G. R. & Kirwan, M. L. Temperature optimum for marsh resilience and carbon accumulation revealed in a whole-ecosystem warming experiment. Glob. Change Biol. 28, 3236–3245 (2022).

    Article 
    CAS 

    Google Scholar 

  • Guimond, J. & Tamborski, J. Salt marsh hydrogeology: a review. Water 13, 543 (2021).

    Article 
    CAS 

    Google Scholar 

  • Xin, P. et al. Surface water and groundwater interactions in salt marshes and their impact on plant ecology and coastal biogeochemistry. Rev. Geophys. 60, e2021RG000740 (2022).

    Article 
    ADS 

    Google Scholar 

  • Chen, Y. & Kirwan, M. L. Climate-driven decoupling of wetland and upland biomass trends on the mid-Atlantic coast. Nat. Geosci. 15, 913–918 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rapalee, G., Trumbore, S. E., Davidson, E. A., Harden, J. W. & Veldhuis, H. Soil Carbon stocks and their rates of accumulation and loss in a boreal forest landscape. Glob. Biogeochem. Cycles 12, 687–701 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F. & Six, J. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry 86, 19–31 (2007).

    Article 
    CAS 

    Google Scholar 

  • Zhou, T. et al. Age-dependent forest carbon sink: Estimation via inverse modeling. J. Geophys. Res. Biogeosci. 120, 2473–2492 (2015).

    Article 
    CAS 

    Google Scholar 

  • Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).

    Article 

    Google Scholar 

  • Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).

    Article 
    ADS 

    Google Scholar 

  • Brinson, M. M., Christian, R. R. & Blum, L. K. Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries 18, 648–659 (1995).

    Article 
    CAS 

    Google Scholar 

  • Schieder, N. W. & Kirwan, M. L. Sea-level driven acceleration in coastal forest retreat. Geology 47, 1151–1155 (2019).

    Article 
    ADS 

    Google Scholar 

  • Leonardi, N., Ganju, N. K. & Fagherazzi, S. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proc. Natl Acad. Sci. USA 113, 64–68 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Feagin, R. A., Martinez, M. L., Mendoza-Gonzalez, G. & Costanza, R. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. Ecol. Soc. 15, 14 (2010).

  • Sapkota, Y. & White, J. R. Marsh edge erosion and associated carbon dynamics in coastal Louisiana: a proxy for future wetland-dominated coastlines world-wide. Estuar. Coast. Shelf Sci. 226, 106289 (2019).

    Article 
    CAS 

    Google Scholar 

  • Smith, K. E. L., Terrano, J. F., Khan, N. S., Smith, C. G. & Pitchford, J. L. Lateral shoreline erosion and shore-proximal sediment deposition on a coastal marsh from seasonal, storm and decadal measurements. Geomorphology 389, 107829 (2021).

    Article 

    Google Scholar 

  • Bouma, T. J. et al. Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics. Limnol. Oceanogr. 61, 2261–2275 (2016).

    Article 
    ADS 

    Google Scholar 

  • Gillis, L. G. et al. Potential for landscape-scale positive interactions among tropical marine ecosystems. Mar. Ecol. Prog. Ser. 503, 289–303 (2014).

    Article 
    ADS 

    Google Scholar 

  • Schuerch, M., Dolch, T., Reise, K. & Vafeidis, A. T. Unravelling interactions between salt marsh evolution and sedimentary processes in the Wadden Sea (southeastern North Sea). Prog. Phys. Geogr. Earth Environ. 38, 691–715 (2014).

    Article 

    Google Scholar 

  • Gonneea, M. E. et al. Salt marsh ecosystem restructuring enhances elevation resilience and carbon storage during accelerating relative sea-level rise. Estuar. Coast. Shelf Sci. 217, 56–68 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McTigue, N. et al. Sea level rise explains changing carbon accumulation rates in a salt marsh over the past two millennia. J. Geophys. Res. Biogeosci. 124, 2945–2957 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wang, F., Lu, X., Sanders, C. J. & Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 10, 5434 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, F. et al. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl Sci. Rev. 8, nwaa296 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ganju, N. K., Defne, Z., Elsey-Quirk, T. & Moriarty, J. M. Role of tidal wetland stability in lateral fluxes of particulate organic matter and carbon. J. Geophys. Res. Biogeosci. 124, 1265–1277 (2019).

    Article 
    CAS 

    Google Scholar 

  • Krauss, K. W. et al. The role of the upper tidal estuary in wetland blue carbon storage and flux. Glob. Biogeochem. Cycles 32, 817–839 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Baustian, M. M., Stagg, C. L., Perry, C. L., Moss, L. C. & Carruthers, T. J. B. Long-term carbon sinks in marsh soils of coastal louisiana are at risk to wetland loss. J. Geophys. Res. Biogeosci. 126, e2020JG005832 (2021).

    Article 
    ADS 

    Google Scholar 

  • DeLaune, R. D. & White, J. R. Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: a case study of the rapidly subsiding Mississippi river deltaic plain. Clim. Change 110, 297–314 (2012).

    Article 
    ADS 

    Google Scholar 

  • Lovelock, C. E. & Duarte, C. M. Dimensions of Blue Carbon and emerging perspectives. Biol. Lett. 15, 20180781 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lovelock, C. E. & Reef, R. Variable impacts of climate change on Blue Carbon. One Earth 3, 195–211 (2020).

    Article 
    ADS 

    Google Scholar 

  • Bernal, B. & Mitsch, W. J. Comparing carbon sequestration in temperate freshwater wetland communities. Glob. Change Biol. 18, 1636–1647 (2012).

    Article 
    ADS 

    Google Scholar 

  • Mack, S. K., Lane, R. R., Deng, J., Morris, J. T. & Bauer, J. J. Wetland carbon models: applications for wetland carbon commercialization. Ecol. Model. 476, 110228 (2023).

    Article 
    CAS 

    Google Scholar 

  • Young, I. R. & Verhagen, L. A. The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coast. Eng. 29, 47–78 (1996).

    Article 

    Google Scholar 

  • Mariotti, G. & Fagherazzi, S. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proc. Natl Acad. Sci. USA 110, 5353–5356 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koppel, J., van de, Wal, D., van der, Bakker, J. P. & Herman, P. M. J. Self‐organization and vegetation collapse in salt marsh ecosystems. Am. Nat. 165, E1–E12 (2005).

    Article 
    PubMed 

    Google Scholar 

  • D’Alpaos, A., Lanzoni, S., Marani, M. & Rinaldo, A. Landscape evolution in tidal embayments: modeling the interplay of erosion, sedimentation, and vegetation dynamics. J. Geophys. Res. Earth Surf. 112, F01008 (2007).

  • Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401 (2010).

  • Larsen, L. G. & Harvey, J. W. How vegetation and sediment transport feedbacks drive landscape change in the everglades and wetlands worldwide. Am. Nat. 176, E66–E79 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Smith, J. A. M. The role of Phragmites australis in mediating inland salt marsh migration in a Mid-Atlantic Estuary. PLoS ONE 8, e65091 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mariotti, G., Elsey-Quirk, T., Bruno, G. & Valentine, K. Mud-associated organic matter and its direct and indirect role in marsh organic matter accumulation and vertical accretion. Limnol. Oceanogr. 65, 2627–2641 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ladd, C. J. T., Duggan-Edwards, M. F., Bouma, T. J., Pagès, J. F. & Skov, M. W. Sediment supply explains long-term and large-scale patterns in salt marsh lateral expansion and erosion. Geophys. Res. Lett. 46, 11178–11187 (2019).

    Article 
    ADS 

    Google Scholar 

  • Törnqvist, T. E., Jankowski, K. L., Li, Y.-X. & González, J. L. Tipping points of Mississippi Delta marshes due to accelerated sea-level rise. Sci. Adv. 6, eaaz5512 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012).


  • Source: Ecology - nature.com

    Larval rockfish growth and survival in response to anomalous ocean conditions

    When legislation to protect wildlife becomes a problem