in

Decadal decline in maternal body condition of a Southern Ocean capital breeder

  • Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. IPCC Special Report on the Ocean Cryosphere in a Changing Climate 477–587 (2019).

  • Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chang. 9, 142–147 (2019).

    Article 
    ADS 

    Google Scholar 

  • Lowther, A. D., Staniland, I., Lydersen, C. & Kovacs, K. M. Male Antarctic fur seals: Neglected food competitors of bioindicator species in the context of an increasing Antarctic krill fishery. Sci. Rep. 10, 1–12 (2020).

    Article 

    Google Scholar 

  • Barbosa, A., Benzal, J., de León, A. & Moreno, J. Population decline of chinstrap penguins (Pygoscelis antarctica) on Deception Island, South Shetlands, Antarctica. Polar Biol. 35, 1453–1457 (2012).

    Article 

    Google Scholar 

  • Forcada, J., Trathan, P. N., Reid, K. & Murphy, E. J. The effects of global climate variability in pop production of Antarctic fur seals. Ecology 86, 2408–2417 (2005).

    Article 

    Google Scholar 

  • Forcada, J. & Trathan, P. N. Penguin responses to climate change in the Southern Ocean. Glob. Change Biol. https://doi.org/10.1111/j.1365-2486.2009.01909.x (2009).

    Article 

    Google Scholar 

  • Fraser, W. & Hofmann, E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar. Ecol. Prog. Ser. 265, 1–15 (2003).

    Article 
    ADS 

    Google Scholar 

  • Tulloch, V. J. D., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).

    Article 
    ADS 

    Google Scholar 

  • Gosler, A. G. Environmental and social determinants of winter fat storage in the great tit Parus major. J. Anim. Ecol. 65, 1–17 (1996).

    Article 

    Google Scholar 

  • Green, A. J. Mass/Length residuals: Measures of body condition or generators of spurious results?. Ecology 13, 1473–1483 (2001).

    Article 

    Google Scholar 

  • Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. & Hickling, G. J. Restitution of mass-size residuals: Validating body condition indices. Ecology 86, 155–163 (2005).

    Article 

    Google Scholar 

  • Arnbom, T., Fedak, M. A. & Boyd, I. L. Factors affecting maternal expenditure in southern elephant seals during lactation. Ecology 78, 471–483 (1997).

    Article 

    Google Scholar 

  • Boltnev, A. I. & York, A. E. Maternal investment in northern fur seals (Callorhinus ursinus): Interrelationships among mothers’ age, size, parturition date, offspring size and sex ratios. J. Zool. 254, 219–228 (2001).

    Article 

    Google Scholar 

  • Tollefson, T. N., Shipley, L. A., Myers, W. L., Keisler, D. H. & Dasgupta, N. Influence of summer and autumn nutrition on body condition and reproduction in lactating mule deer. J. Wildl. Manag. 74, 974–986 (2010).

    Article 

    Google Scholar 

  • Wheatley, K. E., Bradshaw, C. J. A., Davis, L. S., Harcourt, R. G. & Hindell, M. A. Influence of maternal mass and condition on energy transfer in Weddell seals. J. Anim. Ecol. 75, 724–733 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Miller, C. A. et al. Blubber thickness in right whales Eubalaena glacialis and Eubalaena australis related with reproduction, life history status and prey abundance. Mar. Ecol. Prog. Ser. 438, 267–283 (2011).

    Article 
    ADS 

    Google Scholar 

  • Christiansen, F., Víkingsson, G. A., Rasmussen, M. H. & Lusseau, D. Female body condition affects foetal growth in a capital breeding mysticete. Funct. Ecol. 28, 579–588 (2014).

    Article 

    Google Scholar 

  • Christiansen, F. et al. Maternal body size and condition determine calf growth rates in southern right whales. Mar. Ecol. Prog. Ser. 592, 267–282 (2018).

    Article 
    ADS 

    Google Scholar 

  • Norris, K. S. Some observations on the migration and orientation of marine mammals. Anim. Orientat. Migr. 101, 125 (1967).

    Google Scholar 

  • Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?. Mar. Mammal Sci. 15, 1228–1245 (1999).

    Article 

    Google Scholar 

  • Frazer, J. F. D. & Huggett, A. S. G. Specific foetal growth rates of cetaceans. J. Zool. 169, 111–126 (1973).

    Article 

    Google Scholar 

  • Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).

    Article 

    Google Scholar 

  • Castrillon, J. & Bengtson Nash, S. Evaluating cetacean body condition; A review of traditional approaches and new developments. Ecol. Evol. 10, 6144–6162 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leaper, R. et al. Global climate drives southern right whale (Eubalaena australis) population dynamics. Biol. Lett. 2, 289–292 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lockyer, C. All creatures great and smaller: A study in cetacean life history energetics. J. Mar. Biol. Assoc. UK 87, 1035–1045 (2007).

    Article 

    Google Scholar 

  • Seyboth, E. et al. Southern right whale (Eubalaena australis) reproductive success is influenced by Krill (Euphausia superba) density and climate. Sci. Rep. 6, 28205 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, R. et al. Evidence for density-dependent changes in body condition and pregnancy rate of North Atlantic fin whales over four decades of varying environmental conditions. ICES J. Mar. Sci. 70, 1273–1280 (2013).

    Article 

    Google Scholar 

  • Best, P. B. Trends in the inshore right whale population off South Africa, 1969–1987. Mar. Mammal Sci. 6, 93–108 (1990).

    Article 

    Google Scholar 

  • Best, P. B. Seasonality of reproduction and the length of gestation in southern right whales Eubalaena australis. J. Zool. 232, 175–189 (1994).

    Article 

    Google Scholar 

  • Best, P. B., Brandão, A. & Butterworth, D. S. Demographic parameters of southern right whales off South Africa. J. Cetacean Res. Manag. https://doi.org/10.47536/jcrm.vi.296 (2001).

    Article 

    Google Scholar 

  • Vermeulen, E., Wilkinson, C. & Thornton, M. Report of the 2018 South African Southern Right. Paper SC/68A/SH/01 Presented to IWC Scientific Committee, 2019 (unpublished). 25 pp. (Available from Off. this Journal) (2019).

  • Knowlton, A. R., Kraus, S. D. & Kenney, R. D. Reproduction in North Atlantic right whales (Eubalaena glacialis). Can. J. Zool. 72, 1297–1305 (1994).

    Article 

    Google Scholar 

  • van den Berg, G. L. et al. Decadal shift in foraging strategy of a migratory Southern Ocean predator. Glob. Change Biol. https://doi.org/10.1111/gcb.15465 (2021).

    Article 

    Google Scholar 

  • Carroll, E. L. et al. First Direct evidence for natal wintering ground fidelity and estimate of Juvenile Survival in the New Zealand southern right whale Eubalaena australis. PLoS ONE 11, e0146590 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valenzuela, L. O., Sironi, M., Rowntree, V. J. & Seger, J. Isotopic and genetic evidence for culturally inherited site fidelity to feeding grounds in southern right whales (Eubalaena australis). Mol. Ecol. 18, 782–791 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Best, P. B. & Ruther, H. Aerial photogrammetry of southern right whales, Eubalaena australis. J. Zool. 228, 595–614 (1992).

    Article 

    Google Scholar 

  • Mate, B., Best, P., Lagerquist, B. A. & Winsor, M. H. Coastal, offshore, and migratory movements of South African right whales revealed by satellite telemetry. Mar. Mammal Sci. 27, 455–476 (2011).

    Article 

    Google Scholar 

  • Christiansen, F., Dujon, A. M., Sprogis, K. R., Arnould, J. P. Y. & Bejder, L. Non-invasive unmanned aerial vehicle provides estimates of the energetic cost of reproduction in humpback whales. Ecosphere 7, 1–7 (2016).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (2020).

  • Lockyer, C. Growth and energy budgets of large baleen whales from the Southern Hemisphere. Mamm. Seas, vol. 3, (FAO Fisheries Series No. 5) 379–487 (1981).

  • Christiansen, F. et al. Estimating body mass of free-living whales using aerial photogrammetry and 3D volumetrics. Methods Ecol. Evol. 10, 2034–2044 (2019).

    Article 

    Google Scholar 

  • Christiansen, F. et al. Population comparison of right whale body condition reveals poor state of the North Atlantic right whale. Mar. Ecol. Prog. Ser. 640, 1–16 (2020).

    Article 
    ADS 

    Google Scholar 

  • Braithwaite, J. E., Meeuwig, J. J., Letessier, T. B., Jenner, K. C. S. & Brierley, A. S. From sea ice to blubber: Linking whale condition to krill abundance using historical whaling records. Polar Biol. 38, 1195–1202 (2015).

    Article 

    Google Scholar 

  • Loeb, V. J., Hofmann, E. E., Klinck, J. M., Holm-Hansen, O. & White, W. B. ENSO and variability of the antarctic peninsula pelagic marine ecosystem. Antarct. Sci. 21, 135–148 (2009).

    Article 
    ADS 

    Google Scholar 

  • Reid, K. & Croxall, J. P. Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. Proc. R. Soc. B Biol. Sci. 268, 377–384 (2001).

    Article 
    CAS 

    Google Scholar 

  • Trathan, P. N., Forcada, J. & Murphy, E. J. Environmental forcing and Southern Ocean marine predator populations: Effects of climate change and variability. Philos. Trans. R. Soc. Biol. Sci. https://doi.org/10.1098/rstb.2006.1953 (2007).

    Article 

    Google Scholar 

  • Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the Southern Oceans. J. Mar. Syst. 78, 363–376 (2009).

    Article 

    Google Scholar 

  • Crocker, D. E., Costa, D. P., Le Boeuf, B. J., Webb, P. M. & Houser, D. S. Impact of El Niño on the foraging behavior of female northern elephant seals. Mar. Ecol. Prog. Ser. 309, 1–10 (2006).

    Article 
    ADS 

    Google Scholar 

  • Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).

    Article 
    ADS 

    Google Scholar 

  • Forcada, J. et al. Responses of Antarctic pack-ice seals to environmental change and increasing krill fishing. Biol. Conserv. 149, 40–50 (2012).

    Article 

    Google Scholar 

  • Garcia-Rojas, M. I. et al. Environmental evidence for a pygmy blue whale aggregation area in the Subtropical Convergence Zone south of Australia. Mar. Mammal Sci. 34, 901–923 (2018).

    Article 

    Google Scholar 

  • Tormosov, D. et al. Soviet catches of southern right whales Eubalaena australis, 1951–1971: Biological data and conservation implications. Biol. Conserv. 86, 185–197 (1998).

    Article 

    Google Scholar 

  • Trathan, P. N. et al. Foraging dynamics of macaroni penguins Eudyptes chrysolophus at South Georgia during brood-guard. Mar. Ecol. Prog. Ser. 323, 239–251 (2006).

    Article 
    ADS 

    Google Scholar 

  • Murphy, E. J. et al. Climatically driven fluctuations in Southern Ocean ecosystems. Proc. R. Soc. B Biol. Sci. 274, 3057–3067 (2007).

    Article 

    Google Scholar 

  • Nicol, S. Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience 56, 111–120 (2006).

    Article 

    Google Scholar 

  • Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Atkinson, A. et al. South Georgia, Antarctica: A productive, cold water, pelagic ecosystem. Mar. Ecol. Prog. Ser. 216, 279–308 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Atkinson, A., Ward, P., Hill, A., Brierley, A. S. & Cripps, G. C. Krill-copepod interactions at South Georgia, Antarctica, II. Euphausia superba as a major control on copepod abundance. Mar. Ecol. Prog. Ser. 176, 63–79 (1999).

    Article 
    ADS 

    Google Scholar 

  • DeLorenzo Costa, A., Durbin, E. G. & Mayo, C. A. Variability in the nutritional value of the major copepods in Cape Cod Bay (Massachusetts, USA) with implications for right whales. Mar. Ecol. 27, 109–123 (2006).

    Article 
    ADS 

    Google Scholar 

  • Linder, M., Belhaj, N., Sautot, P. & Tehrany, E. A. From krill to whale: An overview of marine fatty acids and lipid compositions. Oleagineux Corps Gras Lipides: OCL 17, 194–204 (2010).

    Article 

    Google Scholar 

  • McKinstry, C. A. E., Westgate, A. J. & Koopman, H. N. Annual variation in the nutritional value of stage V Calanus finmarchicus: Implications for right whales and other copepod predators. Endanger. Species Res. 20, 195–204 (2013).

    Article 

    Google Scholar 

  • Maron, C. F. et al. Fatty acids and stable isotopes (13C, 15N) in southern right whale Eubalaena australis calves in relation toage and mortality at Peninsula Valdes, Argentina. Mar. Ecol. Prog. Ser. 646, 189–200 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Thomas, V. G. Control of reproduction in animal species with high and low body fat reserves. Prog. Reprod. Biol. Med. 14, 27–41 (1990).

    Google Scholar 

  • Ford, J. K. B., Ellis, G. M., Olesiuk, P. F. & Balcomb, K. C. Linking killer whale survival and prey abundance: Food limitation in the oceans’ apex predator?. Biol. Lett. 6, 139–142 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Greene, C. H., Pershing, A. J., Kenney, R. D. & Jossi, J. W. Impact of climate variability on the recovery of endangered North Atlantic right whales. Oceanography 16, 98–103 (2003).

    Article 

    Google Scholar 

  • Vermeulen, E., Wilkinson, C. & Van Den Berg, G. Report of the Southern Right Whale Aerial Surveys—2019. Paper SC/68B/SH/02 Presented to IWC Scientific Committee, 2020 (unpublished). 25 pp. (Available from Off. this Journal) (2020).

  • Douhard, F., Gaillard, J. M., Pellerin, M., Jacob, L. & Lemaître, J. F. The cost of growing large: Costs of post-weaning growth on body mass senescence in a wild mammal. Oikos 126, 1329–1338 (2017).

    Article 

    Google Scholar 

  • Sigurjónsson, J., Halldórsson, S. D. & Konráðsson, A. New Information on Age and Reproduction in Minke Whales (Balaenoptera acutorostrata) in Icelandic Waters. Page Doc. SC/42/NHMi27 Scientific Communication International Whaling Commission. Noordwijkerhout, Netherlands (1990).

  • Charlton, C. et al. Demographic Parameters of Southern Right Whales (Eubalaena australis) off Australia. Paper SC/67B/INFO/22 Presented to IWC Scientific Committee, 2018 (Unpublished). 28 pp. (Available from Off. This Journal) (2018).

  • Marón, C. F. et al. Increased wounding of southern right Whale (Eubalaena australis) calves by Kelp Gulls (Larus dominicanus) at Península Valdés, Argentina. PLoS ONE 10, 1–20 (2015).

    Google Scholar 

  • Rowntree, V. J. et al. Unexplained recurring high mortality of southern right whale Eubalaena australis calves at Península Valdés, Argentina. Mar. Ecol. Prog. Ser. 493, 275–289 (2013).

    Article 
    ADS 

    Google Scholar 

  • Brandão, A., Vermeulen, E., Ross-gillespie, A., Findlay, K. & Butterworth, D. S. Updated Application of a Photo-Identification Based Assessment Model to Southern Right Whales in South African Waters , Focussing on Inferences to be Drawn from a Series of Appreciably Lower Counts of Calving Females Over 2015 to 2017. Paper SC/67B/SH2 Presented to IWC Scientific Committee, 2018 (unpublished). 18 pp. (Available from Off. this Journal) (2018).

  • Crespo, E. A. et al. The southwestern Atlantic southern right whale, Eubalaena australis, population is growing but at a decelerated rate. Mar. Mammal Sci. 35, 93–107 (2019).

    Article 

    Google Scholar 

  • Agrelo, M. et al. Ocean warming threatens southern right whale population recovery. Sci. Adv. 7, eabh2823 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science (80-) 297, 1292–1296 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nicol, S., Worby, A. & Leaper, R. Changes in the Antarctic sea ice ecosystem: Potential effects on krill and baleen whales. Mar. Freshw. Res. 59, 361–382 (2008).

    Article 

    Google Scholar 

  • Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 32, 1–5 (2005).

    Article 

    Google Scholar 

  • Croxall, J., Reid, K. & Prince, P. Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Mar. Ecol. Prog. Ser. 177, 115–131 (1999).

    Article 
    ADS 

    Google Scholar 

  • Tulloch, V. J. D., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).

    Article 
    ADS 

    Google Scholar 

  • Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science (80-) 328, 1523–1528 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • González Carman, V., Piola, A., O’Brien, T. D., Tormosov, D. D. & Acha, E. M. Circumpolar frontal systems as potential feeding grounds of Southern Right whales. Prog. Oceanogr. 176, 102123 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Improving health outcomes by targeting climate and air pollution simultaneously

    Horses discriminate human body odors between fear and joy contexts in a habituation-discrimination protocol