in

Environmental changes associated with drying climate are expected to affect functional groups of pro- and microeukaryotes differently in temporary saline waters

  • Céréghino, R., Biggs, J., Oertli, B. & Declerck, S. The ecology of European ponds: Defining the characteristics of a neglected freshwater habitat. In Pond Conservation in Europe (eds Oertli, B. et al.) 1–6 (Springer Netherlands, 2007).

    Google Scholar 

  • Olmo, C. et al. The environmental framework of temporary ponds: A tropical-Mediterranean comparison. CATENA 210, 105845 (2022).

    CAS 

    Google Scholar 

  • Griffiths, R. A. Temporary ponds as amphibian habitats. Aquat. Conserv. Mar. Freshw. Ecosyst. 7, 119–126 (1997).

    Google Scholar 

  • Boix, D. et al. Conservation of temporary wetlands. In Encyclopedia of the World’s Biomes 279–294 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-409548-9.12003-2.

    Chapter 

    Google Scholar 

  • Fritz, K. A. & Whiles, M. R. Reciprocal subsidies between temporary ponds and riparian forests. Limnol. Oceanogr. 66, 3149–3161 (2021).

    ADS 

    Google Scholar 

  • Jeffries, M. The spatial and temporal heterogeneity of macrophyte communities in thirty small, temporary ponds over a period of ten years. Ecography 31, 765–775 (2008).

    Google Scholar 

  • Hassall, C. The ecology and biodiversity of urban ponds. WIREs Water 1, 187–206 (2014).

    Google Scholar 

  • Lukács, B. A. et al. Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary). Limnologica 53, 74–83 (2015).

    Google Scholar 

  • Florencio, M., Díaz-Paniagua, C., Gómez-Rodríguez, C. & Serrano, L. Biodiversity patterns in a macroinvertebrate community of a temporary pond network. Insect Conserv. Divers. 7, 4–21 (2014).

    Google Scholar 

  • Meland, S., Sun, Z., Sokolova, E., Rauch, S. & Brittain, J. E. A comparative study of macroinvertebrate biodiversity in highway stormwater ponds and natural ponds. Sci. Total Environ. 740, 140029 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hahn, M. W. The microbial diversity of inland waters. Curr. Opin. Biotechnol. 17, 256–261 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Felföldi, T. Microbial communities of soda lakes and pans in the Carpathian Basin: A review. Biol. Futura 71, 393–404 (2020).

    Google Scholar 

  • Grossart, H., Massana, R., McMahon, K. D. & Walsh, D. A. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol. Oceanogr. 65, S2–S20 (2020).

    CAS 

    Google Scholar 

  • Marrone, F., Fontaneto, D. & Naselli-Flores, L. Cryptic diversity, niche displacement and our poor understanding of taxonomy and ecology of aquatic microorganisms. Hydrobiologia https://doi.org/10.1007/s10750-022-04904-x (2022).

    Article 

    Google Scholar 

  • Ducklow, H. Microbial services: Challenges for microbial ecologists in a changing world. Aquat. Microb. Ecol. 53, 13–19 (2008).

    ADS 

    Google Scholar 

  • Bodelier, P. L. E. Toward understanding, managing, and protecting microbial ecosystems. Front. Microbiol. 2, 80 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Trivedi, C. et al. Losses in microbial functional diversity reduce the rate of key soil processes. Soil Biol. Biochem. 135, 267–274 (2019).

    CAS 

    Google Scholar 

  • Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27, 337–363 (1996).

    Google Scholar 

  • Chase, J. M. Drought mediates the importance of stochastic community assembly. Proc. Natl. Acad. Sci. 104, 17430–17434 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tweed, S., Grace, M., Leblanc, M., Cartwright, I. & Smithyman, D. The individual response of saline lakes to a severe drought. Sci. Total Environ. 409, 3919–3933 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Aguilar, P., Acosta, E., Dorador, C. & Sommaruga, R. Large differences in bacterial community composition among three nearby extreme waterbodies of the High Andean Plateau. Front. Microbiol. 7, 976 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Boros, E., Balogh, K., Vörös, L. & Horváth, Z. Multiple extreme environmental conditions of intermittent soda pans in the Carpathian Basin (Central Europe). Limnologica 62, 38–46 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Lengyel, E., Pálmai, T., Padisák, J. & Stenger-Kovács, C. Annual hydrological cycle of environmental variables in astatic soda pans (Hungary). J. Hydrol. 575, 1188–1199 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Vieira-Silva, S. & Rocha, E. P. C. The Systemic imprint of growth and its uses in ecological (Meta)genomics. PLoS Genet. 6, e1000808 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cunillera-Montcusí, D. et al. Freshwater salinisation: A research agenda for a saltier world. Trends Ecol. Evol. 37, 440–453 (2022).

    PubMed 

    Google Scholar 

  • Šolić, M. et al. Structure of microbial communities in phosphorus-limited estuaries along the eastern Adriatic coast. J. Mar. Biol. Assoc. U.K. 95, 1565–1578 (2015).

    Google Scholar 

  • Traving, S. J. et al. The Effect of increased loads of dissolved organic matter on estuarine microbial community composition and function. Front. Microbiol. 8, 351 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, G. et al. Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environ. Microbiol. 23, 1020–1037 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Tkavc, R. et al. Bacterial communities in the ‘petola’ microbial mat from the Sečovlje salterns (Slovenia): Bacterial communities in the ‘petola’. FEMS Microbiol. Ecol. 75, 48–62 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Ali, I. et al. Comparative study of physical factors and microbial diversity of four man-made extreme ecosystems. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 86, 767–778 (2016).

    Google Scholar 

  • Paul, V., Banerjee, Y., Ghosh, P. & Busi, S. B. Depthwise microbiome and isotopic profiling of a moderately saline microbial mat in a solar saltern. Sci. Rep. 10, 20686 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stenger-Kovács, C. et al. Vanishing world: Alkaline, saline lakes in Central Europe and their diatom assemblages. Inland Waters 4, 383–396 (2014).

    Google Scholar 

  • Stenger-Kovács, C., Hajnal, É., Lengyel, E., Buczkó, K. & Padisák, J. A test of traditional diversity measures and taxonomic distinctness indices on benthic diatoms of soda pans in the Carpathian basin. Ecol. Indic. 64, 1–8 (2016).

    Google Scholar 

  • Szabó, B., Lengyel, E., Padisák, J., Vass, M. & Stenger-Kovács, C. Structuring forces and β-diversity of benthic diatom metacommunities in soda pans of the Carpathian Basin. Eur. J. Phycol. 53, 219–229 (2018).

    Google Scholar 

  • Szabó, A. et al. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21, 639–649 (2017).

    PubMed 

    Google Scholar 

  • Szabó, A. et al. Grazing pressure-induced shift in planktonic bacterial communities with the dominance of acIII-A1 actinobacterial lineage in soda pans. Sci. Rep. 10, 19871 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benlloch, S. et al. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4, 349–360 (2002).

    PubMed 

    Google Scholar 

  • Horváth, Z. et al. Opposing patterns of zooplankton diversity and functioning along a natural stress gradient: When the going gets tough, the tough get going. Oikos 123, 461–471 (2014).

    Google Scholar 

  • Mo, Y. et al. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome 9, 128 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gómez-Rodríguez, C., Bustamante, J. & Díaz-Paniagua, C. Evidence of hydroperiod shortening in a preserved system of temporary ponds. Remote Sens. 2, 1439–1462 (2010).

    ADS 

    Google Scholar 

  • Finger Higgens, R. A. et al. Changing lake dynamics indicate a drier arctic in western greenland. J. Geophys. Res. Biogeosciences 124, 870–883 (2019).

    ADS 

    Google Scholar 

  • Zacharias, I. & Zamparas, M. Mediterranean temporary ponds. A disappearing ecosystem. Biodivers. Conserv. 19, 3827–3834 (2010).

    Google Scholar 

  • Horváth, Z., Ptacnik, R., Vad, C. F. & Chase, J. M. Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecol. Lett. 22, 1019–1027 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Grillas, P., Rhazi, L., Lefebvre, G., El Madihi, M. & Poulin, B. Foreseen impact of climate change on temporary ponds located along a latitudinal gradient in Morocco. Inland Waters 11, 492–507 (2021).

    CAS 

    Google Scholar 

  • Xi, Y., Peng, S., Ciais, P. & Chen, Y. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Change 11, 45–51 (2021).

    ADS 

    Google Scholar 

  • Zhong, Y. et al. Shrinking habitats and native species loss under climate change: a multifactorial risk Assessment of China’s inland wetlands. 28 (2022).

  • Atkinson, S. T. et al. Substantial long-term loss of alpha and gamma diversity of lake invertebrates in a landscape exposed to a drying climate. Glob. Change Biol. 27, 6263–6279 (2021).

    CAS 

    Google Scholar 

  • Whiting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration: Greenhouse carbon balance of wetlands. Tellus B 53, 521–528 (2001).

    ADS 

    Google Scholar 

  • Mitsch, W. J. et al. Wetlands, carbon, and climate change. Landsc. Ecol. 28, 583–597 (2013).

    Google Scholar 

  • Ardón, M., Helton, A. M. & Bernhardt, E. S. Salinity effects on greenhouse gas emissions from wetland soils are contingent upon hydrologic setting: A microcosm experiment. Biogeochemistry 140, 217–232 (2018).

    Google Scholar 

  • Jeppesen, E., Beklioğlu, M., Özkan, K. & Akyürek, Z. Salinization increase due to climate change will have substantial negative effects on inland waters: A call for multifaceted research at the local and global scale. Innovation 1, 100030 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Boros, E., Horváth, Z., Wolfram, G. & Vörös, L. Salinity and ionic composition of the shallow astatic soda pans in the Carpathian Basin. Ann. Limnol. Int. J. Limnol. 50, 59–69 (2014).

    Google Scholar 

  • Sorokin, D. Y. et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18, 791–809 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horváth, Z., Vad, C. F., Vörös, L. & Boros, E. The keystone role of anostracans and copepods in European soda pans during the spring migration of waterbirds: The keystone trophic role of crustaceans in European soda pans. Freshw. Biol. 58, 430–440 (2013).

    Google Scholar 

  • Stenger-Kovács, C. & Lengyel, E. Taxonomical and distribution guide of diatoms in soda pans of Central Europe. Stud. Bot. Hung. 46, 3–203 (2015).

    Google Scholar 

  • Szabó, B. et al. Microbial stowaways: Waterbirds as dispersal vectors of aquatic pro- and microeukaryotic communities. J. Biogeogr. 49, 1286–1298 (2022).

    Google Scholar 

  • Williams, D. D. The Ecology of Temporary Waters (Springer Netherlands, 1987).

    Google Scholar 

  • Hammer, U. T. The effects of climate change on the salinity, water levels and biota of Canadian prairie saline lakes. SIL Proc. 1922–2010(24), 321–326 (1990).

    Google Scholar 

  • Schallenberg, M., Hall, C. & Burns, C. Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Mar. Ecol. Prog. Ser. 251, 181–189 (2003).

    ADS 

    Google Scholar 

  • Felföldi, T., Somogyi, B., Márialigeti, K. & Vörös, L. Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). J. Limnol. 68, 385 (2009).

    Google Scholar 

  • Somogyi, B. et al. Winter bloom of picoeukaryotes in Hungarian shallow turbid soda pans and the role of light and temperature. Aquat. Ecol. 43, 735–744 (2009).

    CAS 

    Google Scholar 

  • Pálffy, K. et al. Unique picoeukaryotic algal community under multiple environmental stress conditions in a shallow, alkaline pan. Extremophiles 18, 111–119 (2014).

    PubMed 

    Google Scholar 

  • Padisák, J. & Naselli-Flores, L. Phytoplankton in extreme environments: Importance and consequences of habitat permanency. Hydrobiologia 848, 157–176 (2021).

    Google Scholar 

  • Olli, K., Ptacnik, R., Klais, R. & Tamminen, T. Phytoplankton species richness along coastal and estuarine salinity continua. Am. Nat. 194, E41–E51 (2019).

    PubMed 

    Google Scholar 

  • Olli, K., Tamminen, T. & Ptacnik, R. Predictable shifts in diversity and ecosystem function in phytoplankton communities along coastal salinity continua. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10242 (2022).

    Article 

    Google Scholar 

  • Tikhonenkov, D. V., Burkovsky, I. V. & Mazei, Y. A. Is there a relation between the distribution of heterotrophic flagellates and the zonation of a marine intertidal flat?. Oceanology 55, 13 (2015).

    Google Scholar 

  • Arndt, H. et al. Functional diversity of heterotrophic flagellates in aquatic ecosystems. In Flagellates 252–280 (CRC Press, 2000). https://doi.org/10.1201/9781482268225-18.

    Chapter 

    Google Scholar 

  • JeLee, W. & Patterson, D. J. Diversity and geographic distribution of free-living heterotrophic flagellates—Analysis by PRIMER. Protist 149, 229–244 (1998).

    CAS 

    Google Scholar 

  • Azovsky, A. I., Tikhonenkov, D. V. & Mazei, Y. A. An estimation of the global diversity and distribution of the smallest eukaryotes: Biogeography of marine benthic heterotrophic flagellates. Protist 167, 411–424 (2016).

    PubMed 

    Google Scholar 

  • Tikhonenkov, D. V., Mazei, Y. A. & Mylnikov, A. P. Species diversity of heterotrophic flagellates in White Sea littoral sites. Eur. J. Protistol. 42, 191–200 (2006).

    PubMed 

    Google Scholar 

  • Van der Gucht, K. et al. The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. Proc. Natl. Acad. Sci. 104, 20404–20409 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vanschoenwinkel, B. et al. Species sorting in space and time—The impact of disturbance regime on community assembly in a temporary pool metacommunity. J. North Am. Benthol. Soc. 29, 1267–1278 (2010).

    Google Scholar 

  • Datry, T. et al. Metacommunity patterns across three neotropical catchments with varying environmental harshness. Freshw. Biol. 61, 277–292 (2016).

    Google Scholar 

  • Hansen, H. P. & Koroleff, F. Determination of nutrients. In Methods of Seawater Analysis (eds Grasshoff, K. et al.) 159–228 (Wiley-VCH Verlag GmbH, 1999).

    Google Scholar 

  • Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. Standard methods for examination of water and wastewater. 20th ed. http://ipkosar.ir/jspui/handle/961944/280820 (1999).

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: Primers for marine microbiome studies. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).

    Google Scholar 

  • Ray, J. L. et al. Metabarcoding and metabolome analyses of copepod grazing reveal feeding preference and linkage to metabolite classes in dynamic microbial plankton communities. Mol. Ecol. 25, 5585–5602 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One 9, e87624 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence sata on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kunin, V., Engelbrektson, A., Ochman, H. & Hugenholtz, P. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12, 118–123 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rohwer, R. R., Hamilton, J. J., Newton, R. J. & McMahon, K. D. TaxAss: Leveraging a custom freshwater database achieves fine-scale taxonomic resolution. mSphere 3, e00327-18 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guillou, L. et al. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan (2020).

  • Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using Adonis. Pairwise Adonis R package version 0.4. R package. https://cran.r-project.org/web/packages/pairwise/index.html (2017).

  • Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. ggpubr R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr (2020).

  • Burian, A. et al. Predation increases multiple components of microbial diversity in activated sludge communities. ISME J. 16, 1086–1094 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology, picante R package version 1.8.2. Bioinformatics 26, 1463–1464. https://cran.r-project.org/web/packages/picante/index.html (2010).

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. 4th ed. MASS R package version 7.3-54 (Springer, 2002). https://cran.r-project.org/web/packages/MASS/index.html. ISBN 0-387-95457-0.

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. mgcv R package version 1.8-38. J. R. Stat. Soc. B 73(1), 3–36. https://cran.r-project.org/web/packages/mgcv/index.html (2011).

  • Gu, Z. Complex heatmap visualization. iMeta 1 (2022).

  • R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2022). https://www.R-project.org/.


  • Source: Ecology - nature.com

    Improving health outcomes by targeting climate and air pollution simultaneously

    Horses discriminate human body odors between fear and joy contexts in a habituation-discrimination protocol