Muller, Z. et al. Giraffa camelopardalis. The IUCN red list of threatened species 2016:e.T9194A109326950 (2018).
Oconnor, D. et al. Updated geographic range maps for giraffe, Giraffa spp., throughout sub-Saharan Africa, and implications of changing distributions for conservation. Mamm. Rev. 49, 285–299. https://doi.org/10.1111/mam.12165 (2019).
Google Scholar
Brown, M. B. et al. Conservation status of giraffe: Evaluating contemporary distribution and abundance with evolving taxonomic perspectives. Ref. Module Earth Syst. Environ. Sci. https://doi.org/10.1016/B978-0-12-821139-7.00139-2 (2021).
Google Scholar
Dunn, M. E. et al. Investigating the international and pan-African trade in giraffe parts and derivatives. Conserv. Sci. Pract. 3, e390. https://doi.org/10.1111/csp2.390 (2021).
Google Scholar
Hassanin, A. et al. Mitochondrial DNA variability in Giraffa camelopardalis: Consequences for taxonomy, phylogeography and conservation of giraffes in West and Central Africa. C.R. Biol. 330, 265–274. https://doi.org/10.1016/j.crvi.2007.02.008 (2007).
Google Scholar
Groves, C. & Grubb, P. Ungulate Taxonomy (Johns Hopkins University Press, 2011).
Google Scholar
Fennessy, J. et al. Multi-locus analyses reveal four giraffe species instead of one. Curr. Biol. 26, 1–7. https://doi.org/10.1016/j.cub.2016.07.036 (2016).
Google Scholar
Winter, S., Fennessy, J. & Janke, A. Limited introgression supports division of giraffe into four species. Ecol. Evol. 8, 10156–10165. https://doi.org/10.1002/ece3.4490 (2018).
Google Scholar
Bercovitch, F. B. Giraffe taxonomy, geographic distribution, and conservation. Afr. J. Ecol. 58, 150–158. https://doi.org/10.1111/aje.12741 (2020).
Google Scholar
Petzold, A. & Hassanin, A. A comparative approach for species delimitation based on multiple methods of multi-locus DNA sequence analysis: A case study of the genus Giraffa (Mammalia, Cetartiodactyla). PLoS ONE 15, e0217956. https://doi.org/10.1371/journal.pone.0217956 (2020).
Google Scholar
Petzold, A. et al. First insights into past biodiversity of giraffes based on mitochondrial sequences from museum specimens. Eur. J. Taxon. 703, L57-63. https://doi.org/10.1371/journal.pone.0217956 (2020).
Google Scholar
Coimbra, R. T. F. et al. Whole-genome analysis of giraffe supports four distinct species. Curr. Biol. 31, 2929-2938.e5. https://doi.org/10.1016/j.cub.2021.04.033 (2021).
Google Scholar
Muneza, A. B. et al. Giraffa camelopardalis ssp. reticulata. The IUCN Red List of Threatened Species 2018:e.T88420717A88420720 (2018).
Miller, M. F. Dispersal of Acacia seeds by ungulates and ostriches in an African Savanna. J. Trop. Ecol. 12, 345–356. https://doi.org/10.1017/S0266467400009548 (1996).
Google Scholar
Palmer, T. M. et al. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science 319, 192–195. https://doi.org/10.1126/science.1151579 (2008).
Google Scholar
Kalema, G. Investigation of a skin disease in giraffe in Murchison Falls National Park. Report Submitted to Uganda National Park. Uganda National Parks. Kampala, Uganda (1996).
Muneza, A. B. et al. Regional variation of the manifestation, prevalence, and severity of giraffe skin disease: A review of an emerging disease in wild and captive giraffe populations. Biol. Conserv. 198, 145–156. https://doi.org/10.1016/j.biocon.2016.04.014 (2016).
Google Scholar
Epaphras, A. M., Karimuribo, E. D., Mpanduji, D. G. & Meing’ataki, G. E. Prevalence, disease description and epidemiological factors of a novel skin disease in giraffes (Giraffa camelopardalis) in Ruaha National Park, Tanzania. Res. Opin. Anim. Vet. Sci. 2, 60–65 (2012).
Lee, D. E. & Bond, M. L. The occurrence and prevalence of giraffe skin disease in protected areas of northern Tanzania. J. Wildl. Dis. 52, 753–755. https://doi.org/10.7589/2015-09-24 (2016).
Google Scholar
Muneza, A. B. et al. Examining disease prevalence for species of conservation concern using non-invasive spatial capture–recapture techniques. J. Appl. Ecol. 54, 709–717. https://doi.org/10.1111/1365-2664.12796 (2017).
Google Scholar
Brown, M. Murchison falls giraffe project: Field report. Giraffid 9, 5–10 (2015).
Muneza, A. B. et al. Quantifying the severity of an emerging skin disease affecting giraffe populations using photogrammetry analysis of camera trap data. J. Wildl. Dis. 55, 770–781. https://doi.org/10.7589/2018-06-149 (2019).
Google Scholar
Han, S. et al. Giraffe skin disease: Clinicopathologic characterization of cutaneous filariasis in the critically endangered Nubian giraffe (Giraffa camelopardalis camelopardalis). Vet. Pathol. https://doi.org/10.1177/03009858221082606 (2022).
Google Scholar
Whittier, C. A. et al. Cutaneous filariasis in free-ranging Rothschild’s giraffes (Giraffa Camelopardalis rothschildi) in Uganda. J. Wildl. Dis. 56, 1–5. https://doi.org/10.7589/2018-09-212 (2020).
Google Scholar
Pellew, R. Food consumption and energy budgets of the giraffe. J. Appl. Ecol. 21, 141–159. https://doi.org/10.2307/2403043 (1984).
Google Scholar
Strauss, M. K. L. & Packer, C. Using claw marks to study lion predation on giraffes of the Serengeti. J. Zool. 289, 134–142. https://doi.org/10.1111/j.1469-7998.2012.00972.x (2013).
Google Scholar
Muneza, A. B. et al. Exploring the connections between giraffe skin disease and lion predation. J. Zool. https://doi.org/10.1111/jzo.12930 (2021).
Google Scholar
Lindsey, P. A. et al. The bushmeat trade in African savannas: Impacts, drivers, and possible solutions. Biol. Conserv. 160, 80–96. https://doi.org/10.1016/j.biocon.2012.12.020 (2013).
Google Scholar
Becker, M. et al. Evaluating wire-snare poaching trends and the impacts of by-catch on elephants and large carnivores. Biol. Conserv. 158, 26–36. https://doi.org/10.1016/j.biocon.2012.08.017 (2013).
Google Scholar
Mudumba, T., Jingo, S., Heit, D. & Montgomery, R. A. The landscape configuration and lethality of snare poaching of sympatric guilds of large carnivores and ungulates. Afr. J. Ecol. 59, 51–62. https://doi.org/10.1111/aje.12781 (2020).
Google Scholar
Strauss, M. K. L., Kilewo, M., Rentsch, D. & Packer, C. Food supply and poaching limit giraffe abundance in the Serengeti. Popul. Ecol. 57, 505–516. https://doi.org/10.1007/s10144-015-0499-9 (2015).
Google Scholar
Munn, J. Effects of injury on the locomotion of free-ranging chimpanzees in the Budongo Forest Reserve, Uganda. In Primates of Western Uganda: Developments in Primatology: Progress and Prospects (eds. Newton-Fisher, N. E., Notman, H., Paterson, J. D., & Reynolds, V.) 259–280 (Springer, 2006).
Yersin, H., Asiimwe, C., Voordouw, M. J. & Zuberbühler, K. Impact of snare injuries on parasite prevalence in wild chimpanzees (Pan troglodytes). Int. J. Primatol. 38, 21–30. https://doi.org/10.1007/s10764-016-9941-x (2017).
Google Scholar
Dagg, A. I. Gaits of the giraffe and okapi. J. Mammal. 41, 282–282. https://doi.org/10.2307/1376381 (1960).
Google Scholar
Dagg, A. I. The role of the neck in the movements of the giraffe. J. Mammal. 43, 88–97. https://doi.org/10.2307/1376883 (1962).
Google Scholar
Dagg, A. I. & Vos, A. D. The walking gaits of some species of Pecora. J. Zool. 155, 103–110. https://doi.org/10.1111/j.1469-7998.1968.tb03031.x (1968).
Google Scholar
Alexander, R. M. N., Langman, V. A. & Jayes, A. S. Fast locomotion of some African ungulates. J. Zool. 183, 291–300. https://doi.org/10.1111/j.1469-7998.1977.tb04188.x (1977).
Google Scholar
Basu, C., Deacon, F., Hutchinson, J. R. & Wilson, A. M. The running kinematics of free-roaming giraffes, measured using a low cost unmanned aerial vehicle (UAV). PeerJ 7, e6312. https://doi.org/10.7717/peerj.6312 (2019).
Google Scholar
Basu, C., Wilson, A. M. & Hutchinson, J. R. The locomotor kinematics and ground reaction forces of walking giraffes. J. Exp. Biol. 222, jeb159277. https://doi.org/10.1242/jeb.159277 (2019).
Google Scholar
Hildebrand, M. The adaptive significance of tetrapod gait selection. Am. Zool. 20, 255–267. https://doi.org/10.1093/icb/20.1.255 (1980).
Google Scholar
Flower, F. C., Sanderson, D. J. & Weary, D. M. Hoof pathologies influence kinematic measures of dairy cow gait. J. Dairy Sci. 88, 3166–3173. https://doi.org/10.3168/jds.s0022-0302(05)73000-9 (2005).
Google Scholar
Brown, M. B., Bolger, D. T. & Fennessy, J. All the eggs in one basket: A countrywide assessment of current and historical giraffe population distribution in Uganda. Glob. Ecol. Conserv. 19, e00612. https://doi.org/10.1016/j.gecco.2019.e00612 (2019).
Google Scholar
Foster, J. B. The giraffe of Nairobi National Park: Home range, sex ratios, the herd, and food. Afr. J. Ecol. 4, 139–148. https://doi.org/10.1111/j.1365-2028.1966.tb00889.x (1966).
Google Scholar
Bond, M. L., Strauss, M. K. L. & Lee, D. E. Soil correlates and mortality from giraffe skin disease in Tanzania. J. Wildl. Dis. 52, 953–958. https://doi.org/10.7589/2016-02-047 (2016).
Google Scholar
Dunham, N. T., McNamara, A., Shapiro, L., Hieronymus, T. & Young, J. W. A user’s guide for the quantitative analysis of substrate characteristics and locomotor kinematics in free-ranging primates. Am. J. Phys. Anthropol. 167, 569–584. https://doi.org/10.1002/ajpa.23686 (2018).
Google Scholar
Rueden, C. T. et al. Imagej 2: Imagej for the next generation of scientific image data. BMC Bioinform. 18, 529. https://doi.org/10.1186/s12859-017-1934-z (2017).
Google Scholar
Cartmill, M., Lemelin, P. & Schmitt, D. Support polygons and symmetrical gaits in mammals. Zool. J. Linn. Soc. 136, 401–420. https://doi.org/10.1046/j.1096-3642.2002.00038.x (2002).
Google Scholar
Hildebrand, M. Analysis of the symmetrical gaits of tetrapods. Folia Biotheoretica 6, 1–22. https://doi.org/10.2307/1379571 (1966).
Google Scholar
Shapiro, L. J. & Young, J. W. Kinematics of quadrupedal locomotion in sugar gliders (Petaurus breviceps): Effects of age and substrate size. J. Exp. Biol. 215, 480–496. https://doi.org/10.1242/jeb.062588 (2012).
Google Scholar
Shapiro, L. J., Young, J. W. & VandeBerg, J. L. Body size and the small branch niche: Using marsupial ontogeny to model primate locomotor evolution. J. Hum. Evol. 68, 14–31. https://doi.org/10.1016/j.jhevol.2013.12.006 (2014).
Google Scholar
Dunham, N. T., McNamara, A., Shapiro, L., Phelps, T. & Young, J. W. Asymmetrical gait kinematics of free-ranging callitrichines in response to changes in substrate diameter, orientation, and displacement. J. Exp. Biol. 223, jeb217562. https://doi.org/10.1242/jeb.217562 (2020).
Google Scholar
Robinson, R., Herzog, W. & Nigg, B. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manipulative Physiol. Ther. 10, 172–176 (1987).
Google Scholar
Vanden Hole, C. et al. How innate is locomotion in precocial animals? A study on the early development of spatiotemporal gait variables and gait symmetry in piglets. J. Exp. Biol. 220, 2706–2716. https://doi.org/10.1242/jeb.157693 (2017).
Google Scholar
Jacobs, B. Y., Kloefkorn, H. E. & Allen, K. D. Gait analysis methods for rodent models of osteoarthritis. Curr. Pain Headache Rep. 18, 456–475. https://doi.org/10.1007/s11916-014-0456-x (2014).
Google Scholar
Pfau, T., Spence, A., Starke, S., Ferrari, M. & Wilson, A. Modern riding style improves horse racing times. Science 325, 289–289. https://doi.org/10.1126/science.1174605 (2009).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019). http://www.R-project.org/.
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. LmerTest package: Tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).
Google Scholar
Length, R. emmeans: Estimated marginal means, aka least‐squares means. R package version 0.9. https://CRAN.R-project.org/package=emmeans (2017).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).
Google Scholar
Merkens, H. W. & Schamhardt, H. C. Evaluation of equine locomotion during different degrees of experimentally induced lameness I: Lameness model and quantification of ground reaction force patterns of the limbs. Equine Vet. J. 20, 99–106. https://doi.org/10.1111/j.2042-3306.1988.tb04655.x (1988).
Google Scholar
Fanchon, L. & Grandjean, D. Accuracy of asymmetry indices of ground reaction forces for diagnosis of hind limb lameness in dogs. Am. J. Vet. Res. 68, 1089–1094. https://doi.org/10.2460/ajvr.68.10.1089 (2007).
Google Scholar
Bragança, F. M. S., Rhodin, M. & van Weeren, P. R. On the brink of daily clinical application of objective gait analysis: What evidence do we have so far from studies using an induced lameness model?. Vet. J. 234, 11–23. https://doi.org/10.1016/j.tvjl.2018.01.006 (2018).
Google Scholar
Brown, M. B. & Bolger, D. T. Male-biased partial migration in a giraffe population. Front. Ecol. Evol. 7, 524. https://doi.org/10.3389/fevo.2019.00524 (2020).
Google Scholar
Dagg, A. I. Giraffe: Biology, Behaviour and Conservation (Cambridge University Press, 2014).
Google Scholar
Castles, M. P. et al. Relationships between male giraffes’ colour, age and sociability. Anim. Behav. 157, 13–25. https://doi.org/10.1016/j.anbehav.2019.08.003 (2019).
Google Scholar
Source: Ecology - nature.com