in

Genetic and demographic consequences of range contraction patterns during biological annihilation

  • Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS 114, E6089–E6096 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. PNAS 117, 13596–13602 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Butchart, S. H. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).

    Google Scholar 

  • Arenas, M., Ray, N., Currat, M. & Excoffier, L. Consequences of range contractions and range shifts on molecular diversity. Mol. Biol. Evol. 29, 207–218 (2012).

    CAS 

    Google Scholar 

  • Banks, S. C. et al. How does ecological disturbance influence genetic diversity?. Trends Ecol. Evol. 28, 670–679 (2013).

    Google Scholar 

  • Branco, C., Ray, N., Currat, M. & Arenas, M. Influence of Paleolithic range contraction, admixture and long-distance dispersal on genetic gradients of modern humans in Asia. Mol. Ecol. 29, 2150–2159 (2020).

    Google Scholar 

  • Lomolino, M. V. & Channell, R. Splendid isolation: Patterns of geographic range collapse in endangered mammals. J. Mammal. 76(2), 335–347 (1995).

    Google Scholar 

  • Lomolino, M. V. & Channell, R. Range collapse, re-introductions, and biogeographic guidelines for conservation. Conserv. Biol. 12, 481–484 (1998).

    Google Scholar 

  • Channell, R. & Lomolino, M. V. Dynamic biogeography and conservation of endangered species. Nature 403, 84–86 (2000).

    ADS 
    CAS 

    Google Scholar 

  • Channell, R. & Lomolino, M. V. Trajectories to extinction: Spatial dynamics of the contraction of geographical ranges. J. Biogeogr. 27, 169–179 (2000).

    Google Scholar 

  • Laliberte, A. S. & Ripple, W. J. Range contractions of North American carnivores and ungulates. Bioscience 54, 123–138 (2004).

    Google Scholar 

  • Donald, P. F. & Greenwood, J. J. Spatial patterns of range contraction in British breeding birds. Ibis 143, 593–601 (2001).

    Google Scholar 

  • Boakes, E. H., Isaac, N. J., Fuller, R. A., Mace, G. M. & McGowan, P. J. Examining the relationship between local extinction risk and position in range. Conserv. Biol. 32, 229–239 (2018).

    Google Scholar 

  • Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. PNAS 101(42), 15261–15264 (2004).

    ADS 
    CAS 

    Google Scholar 

  • Hoelzel, A. R. et al. Elephant seal genetic variation and the use of simulation models to investigate historical population bottlenecks. J. Hered. 84, 443–449 (1993).

    CAS 

    Google Scholar 

  • Amos, W. & Balmford, A. When does conservation genetics matter?. Heredity 87, 257–265 (2001).

    CAS 

    Google Scholar 

  • Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237 (2003).

    Google Scholar 

  • Carvalho, C. D. S. et al. Habitat loss does not always entail negative genetic consequences. Front. Genet. 10, 1101 (2019).

    CAS 

    Google Scholar 

  • Wheeler, B. A., Prosen, E., Mathis, A. & Wilkinson, R. F. Population declines of a long-lived salamander: A 20+-year study of hellbenders, Cryptobranchus alleganiensis. Biol. Cons. 109, 151–156 (2003).

    Google Scholar 

  • Walkup, D. K., Leavitt, D. J. & Fitzgerald, L. A. Effects of habitat fragmentation on population structure of dune-dwelling lizards. Ecosphere 8, e01729 (2017).

    Google Scholar 

  • Mikle, N., Graves, T. A., Kovach, R., Kendall, K. C. & Macleod, A. C. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore. Proc. R. Soc. B Biol. Sci. 283, 20161467 (2016).

    Google Scholar 

  • DeWoody, J. A., Harder, A. M., Mathur, S. & Willoughby, J. R. The long-standing significance of genetic diversity in conservation. Mol. Ecol. 30(17), 4147–4154 (2021).

    Google Scholar 

  • Kardos, M., Armstrong, E. E., Fitzpatrick, S. W. & Funk, W. C. The crucial role of genome-wide genetic variation in conservation. PNAS 118(48), e210462118 (2021).

    Google Scholar 

  • García-Dorado, A. & Caballero, A. Neutral genetic diversity as a useful tool for conservation biology. Conserv. Genet. 22, 541–545 (2021).

    Google Scholar 

  • Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).

    CAS 

    Google Scholar 

  • Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).

    CAS 

    Google Scholar 

  • Haller, B. C., Galloway, J., Kelleher, J., Messer, P. W. & Ralph, P. L. Tree-sequence recording in SLiM opens new horizons forward-time simulation of whole genomes. Mol. Ecol. Resour. 19, 552–566 (2018).

    Google Scholar 

  • Kelleher, J., Thornton, K. R., Ashander, J. & Ralph, P. L. Efficient pedigree recording for fast population genetics simulation. PLoS Comput. Biol. 14, e1006581 (2018).

    ADS 

    Google Scholar 

  • Haller, B. C. & Messer, P. W. SLiM 3: Forward genetic simulations beyond the Wright–Fisher model. Mol. Biol. Evol. 36, 632–637 (2019).

    CAS 

    Google Scholar 

  • Rodríguez, J. P. Range contraction in declining North American bird populations. Ecol. Appl. 12, 238–248 (2002).

    Google Scholar 

  • Fisher, D. O. Trajectories from extinction: where are missing mammals rediscovered?. Glob. Ecol. Biogeogr. 20, 415–425 (2011).

    Google Scholar 

  • Lino, A., Fonseca, C., Rojas, D., Fischer, E. & Pereira, M. J. R. A meta-analysis of the effects of habitat loss and fragmentation on genetic diversity in mammals. Mamm. Biol. 94, 69–76 (2019).

    Google Scholar 

  • Vandergast, A. G., Bohonak, A. J., Weissman, D. B. & Fisher, R. N. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: Phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol. Ecol. 16, 977–992 (2007).

    CAS 

    Google Scholar 

  • Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418 (1996).

    CAS 

    Google Scholar 

  • Wilkins, J. F. & Wakeley, J. The coalescent in a continuous, finite, linear population. Genetics 161, 873–888 (2002).

    Google Scholar 

  • Ringbauer, H., Coop, G. & Barton, N. H. Inferring recent demography from isolation by distance of long shared sequence blocks. Genetics 205, 1335–1351 (2017).

    Google Scholar 

  • Bradburd, G. S. & Ralph, P. L. Spatial population genetics: It’s about time. Annu. Rev. Ecol. Evol. Syst. 50, 427–429 (2019).

    Google Scholar 

  • Barton, N. H., Etheridge, A. M., Kelleher, J. & Véber, A. Inference in two dimensions: Allele frequencies versus lengths of shared sequence blocks. Theor. Popul. Biol. 87, 105–119 (2013).

    CAS 
    MATH 

    Google Scholar 

  • Aguillon, S. M. et al. Deconstructing isolation-by-distance: The genomic consequences of limited dispersal. PLoS Genet. 13, e1006911 (2017).

    Google Scholar 

  • Blanco-Pastor, J. L., Fernández-Mazuecos, M. & Vargas, P. Past and future demographic dynamics of alpine species: Limited genetic consequences despite dramatic range contraction in a plant from the Spanish Sierra Nevada. Mol. Ecol. 22, 4177–4195 (2013).

    CAS 

    Google Scholar 

  • Chen, N. et al. Allele frequency dynamics in a pedigreed natural population. PNAS 116, 2158–2164 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Exposito-Alonso, M., Booker, T. A., Czech, L., Fukami, T., Gillespie, L., Hateley, S. et al. Quantifying the scale of genetic diversity extinction in the Anthropocene. bioRxiv (2021).

  • Keller, I. & Largiadèr, C. R. Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc. R. Soc. B Biol. Sci. 270, 417–423 (2003).

    CAS 

    Google Scholar 

  • Chan, L. M. et al. Phylogeographic structure of the dunes sagebrush lizard, an endemic habitat specialist. PLoS ONE 15, 0238194 (2020).

    Google Scholar 

  • Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662 (2014).

    Google Scholar 

  • Cayuela, H. et al. Demographic and genetic approaches to study dispersal in wild animal populations: A methodological review. Mol. Ecol. 27, 3976–4010 (2018).

    Google Scholar 

  • Battey, C. J., Ralph, P. L. & Kern, A. D. Space is the place: Effects of continuous spatial structure on analysis of population genetic data. Genetics 215, 193–214 (2020).

    CAS 

    Google Scholar 

  • Stubbs, D. & Swingland, I. R. The ecology of a Mediterranean tortoise (Testudo hermanni): A declining population. Can. J. Zool. 63, 169–180 (1985).

    Google Scholar 

  • Channell, R. The conservation value of peripheral populations: The supporting science. in Proceedings of the Species at Risk 2004 Pathways to Recovery Conference. 1–17. (Species at Risk 2004 Pathways to Recovery Conference Organizing Committee, 2004).

  • Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124(2), 255–279 (1984).

    Google Scholar 

  • Brown, J. H. Macroecology (University of Chicago Press, 1995).

    Google Scholar 

  • Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: Size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27(1), 597–623 (1996).

    Google Scholar 

  • Sagarin, R. D. & Gaines, S. D. The ‘abundant centre’distribution: To what extent is it a biogeographical rule?. Ecol. Lett. 5, 137–147 (2002).

    Google Scholar 

  • Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).

    CAS 

    Google Scholar 

  • Yackulic, C. B., Sanderson, E. W. & Uriarte, M. Anthropogenic and environmental drivers of modern range loss in large mammals. PNAS 108, 4024–4029 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Fitzgerald L.A., Walkup, D. Chyn, K. Buchholtz, E. Angeli, N. & Parker M. The future for reptiles: Advances and challenges in the Anthropocene. in Encyclopedia of the Anthropocene. (eds. Dellasala, D.A., & Goldstein, M.I.). 163–174 (Elsevier, 2018).

  • Segelbacher, G., Höglund, J. & Storch, I. From connectivity to isolation: Genetic consequences of population fragmentation in capercaillie across Europe. Mol. Ecol. 12, 1773–1780 (2003).

    CAS 

    Google Scholar 

  • Cegelski, C. C., Waits, L. P. & Anderson, N. J. Assessing population structure and gene flow in Montana wolverines (Gulo gulo) using assignment-based approaches. Mol. Ecol. 12, 2907–2918 (2003).

    CAS 

    Google Scholar 

  • Proctor, M. F., McLellan, B. N., Strobeck, C. & Barclay, R. M. Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations. Proc. R. Soc. B Biol. Sci. 272, 2409–2416 (2005).

    Google Scholar 

  • Leavitt, D. J. & Fitzgerald, L. A. Disassembly of a dune–dwelling lizard community due to landscape fragmentation. Ecosphere 4, 97 (2013).

    Google Scholar 

  • Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Google Scholar 

  • Rogan, J.E., & Lacher Jr., T.E. Impacts of habitat loss and fragmentation on terrestrial biodiversity. in Reference Modules in Earth Systems and Environmental Sciences. 1–18 (Elsevier, 2018).

  • Hurtado, L. A., Santamaria, C. A. & Fitzgerald, L. A. Conservation genetics of the critically endangered St. Croix ground lizard (Ameiva polops Cope 1863). Conserv. Genet. 13, 665–679 (2012).

    Google Scholar 

  • Lawton, J. H. Range, population abundance and conservation. Trends Ecol. Evol. 8, 409–413 (1993).

    CAS 

    Google Scholar 

  • Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. B Biol. Sci. 267, 1947–1952 (2000).

    CAS 

    Google Scholar 

  • Cardillo, M. et al. The predictability of extinction: Biological and external correlates of decline in mammals. Proc. R. Soc. B Biol. Sci. 275, 1441–1448 (2008).

    Google Scholar 

  • Templeton, A. R. Coadaptation and outbreeding depression. in Conservation Biology: The Science of Scarcity and Diversity. (ed. Soulé, M.E.). 105–116 (Sinauer, 1986).

  • Lomolino, M. V. & Smith, G. A. Dynamic biogeography of prairie dog (Cynomys ludovicianus) towns near the edge of their range. J. Mammal. 82, 937–945 (2001).

    Google Scholar 

  • Wright, S. Isolation by distance. Genetics 28, 114 (1943).

    CAS 

    Google Scholar 

  • Maruyama, T. Rate of decrease of genetic variability in a two-dimensional continuous population of finite size. Genetics 4(1), 639–651 (1972).

    Google Scholar 

  • Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 645, 330–338 (1922).

    Google Scholar 

  • Kelleher, J. & EtheridgeMcVean, A. M. G. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLoS Comput. Biol. 12, e1004842 (2016).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2019).

  • Greenstein, B. J. & Pandolfi, J. M. Escaping the heat: Range shifts of reef coral taxa in coastal Western Australia. Glob. Change Biol. 14, 513–528 (2008).

    ADS 

    Google Scholar 

  • Wilcove, D. S. & Terborgh, J. W. Patterns of population decline in birds. Am. Birds 38, 10–13 (1984).

    Google Scholar 

  • Gabelli, F. M. et al. Range contraction in the Pampas meadowlark Sturnella defilippii in the southern Pampas grasslands of Argentina. Oryx 38, 164–170 (2004).

    Google Scholar 

  • Pomara, L. Y., LeDee, O. E., Martin, K. J. & Zuckerberg, B. Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species. Glob. Change Biol. 20, 2087–2099 (2014).

    ADS 

    Google Scholar 

  • Towns, D. R. & Daugherty, C. H. Patterns of range contractions and extinctions in the New Zealand herpetofauna following human colonisation. N. Z. J. Zool. 21, 325–339 (1994).

    Google Scholar 

  • Rudolph, D. C., Burgdorf, S. J., Schaefer, R. R., Conner, R. N. & Maxey, R. W. Status of Pituophis ruthveni (Louisiana pine snake). Southeast. Nat. 5(3), 463–472 (2006).

    Google Scholar 

  • Russell, R. W., Lipps, G. J. Jr., Hecnar, S. J. & Haffner, G. D. Persistent organic pollutants in Blanchard’s cricket frogs (Acris crepitans blanchardi) from Ohio. Ohio J. Sci. 102, 119–122 (2002).

    CAS 

    Google Scholar 

  • Fellers, G. M. & Drost, C. A. Disappearance of the Cascades frog Rana cascadae at the southern end of its range, California, USA. Biol. Cons. 65, 177–181 (1993).

    Google Scholar 

  • Franco, A. M. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12, 1545–1553 (2006).

    ADS 

    Google Scholar 

  • Stewart, J. A., Wright, D. H. & Heckman, K. A. Apparent climate-mediated loss and fragmentation of core habitat of the American pika in the Northern Sierra Nevada, California, USA. PLoS ONE 12, e0181834 (2017).

    Google Scholar 

  • Rodríguez, A. & Delibes, M. Internal structure and patterns of contraction in the geographic range of the Iberian lynx. Ecography 25, 314–328 (2002).

    Google Scholar 

  • Kattan, G. et al. Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx 38(2), 155–163 (2004).

    Google Scholar 

  • Jones, S. J., Lima, F. P. & Wethey, D. S. Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J. Biogeogr. 37, 2243–2259 (2010).

    Google Scholar 

  • Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. P. R. Soc. B Biol. Sci. 280, 20122829 (2013).

    Google Scholar 


  • Source: Ecology - nature.com

    First detection of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Ixodes ricinus ticks (Acari: Ixodidae) from multiple locations in Hungary

    Chess players face a tough foe: air pollution