in

Land loss due to human-altered sediment budget in the Mississippi River Delta

  • Day, J. W. et al. Pattern and process of land loss in the Mississippi Delta: a spatial and temporal analysis of wetland habitat change. Estuaries 23, 425–438 (2000).

    Article 

    Google Scholar 

  • Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    Article 
    CAS 

    Google Scholar 

  • Higgins, S., Overeem, I., Tanaka, A. & Syvitski, J. P. Land subsidence at aquaculture facilities in the Yellow River delta, China. Geophys. Res. Lett. 40, 3898–3902 (2013).

    Article 

    Google Scholar 

  • Giosan, L., Syvitski, J., Constantinescu, S. & Day, J. Climate change: protect the world’s deltas. Nature 516, 31–33 (2014).

  • Couvillion, B. R., Beck, H., Schoolmaster, D. & Fischer, M. Land Area Change in Coastal Louisiana (1932 to 2016) (USGS, 2017); https://doi.org/10.3133/sim3381

  • Corthell, E. L. The delta of the Mississippi River. Natl Geogr. Mag. 12, 351–354 (1897).

    Google Scholar 

  • Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).

    Article 
    CAS 

    Google Scholar 

  • Gagliano, S. M., Meyer-Arendt, K. J. & Wicker, K. M. Land Loss in the Mississippi River Deltaic Plain. Gulf Coast Assoc. Geol. Soc. Trans. 31, 295–300 (1981).

  • Day, J. W., Clark, H. C., Chang, C., Hunter, R. & Norman, C. R. Life cycle of oil and gas fields in the Mississippi River Delta: a review. Water 12, 1492 (2020).

    Article 
    CAS 

    Google Scholar 

  • Morton, R., Bernier, J., Barras, J. & Ferina, N. Rapid Subsidence and Historical Wetland Loss in the Mississippi Delta Plain: Likely Causes and Future Implications (USGS, 2005).

  • Kolker, A. S., Allison, M. A. & Hameed, S. An evaluation of subsidence rates and sea‐level variability in the northern Gulf of Mexico. Geophys. Res. Lett. 38, L21404 (2011).

  • Roy, S., Robeson, S. M., Ortiz, A. C. & Edmonds, D. A. Spatial and temporal patterns of land loss in the Lower Mississippi River Delta from 1983 to 2016. Remote Sens. Environ. 250, 112046 (2020).

  • Sanks, K. M., Shaw, J. B. & Naithani, K. Field-based estimate of the sediment deficit in coastal Louisiana. J. Geophys. Res. Earth Surf. 125, e2019JF005389 (2020).

    Article 

    Google Scholar 

  • Jankowski, K. L., Törnqvist, T. E. & Fernandes, A. M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 8, 14792 (2017).

    Article 
    CAS 

    Google Scholar 

  • Turner, R. E. & McClenachan, G. Reversing wetland death from 35,000 cuts: opportunities to restore Louisiana’s dredged canals. PLoS ONE 13, e0207717 (2018).

    Article 

    Google Scholar 

  • Falcini, F. et al. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation. Nat. Geosci. 5, 803–807 (2012).

  • Chamberlain, E. L., Törnqvist, T. E., Shen, Z., Mauz, B. & Wallinga, J. Anatomy of Mississippi Delta growth and its implications for coastal restoration. Sci. Adv. 4, eaar4740 (2018).

    Article 

    Google Scholar 

  • Roberts, H. H. Dynamic changes of the Holocene Mississippi River delta plain: the delta cycle. J. Coast. Res. 13, 605–627 (1997).

    Google Scholar 

  • Siverd, C. G. et al. Coastal Louisiana landscape and storm surge evolution: 1850–2110. Clim. Change 157, 445–468 (2019).

    Article 

    Google Scholar 

  • Tweel, A. W. & Turner, R. E. Watershed land use and river engineering drive wetland formation and loss in the Mississippi River birdfoot delta. Limnol. Oceanogr. 57, 18–28 (2012).

    Article 

    Google Scholar 

  • Shen, Z. et al. Episodic overbank deposition as a dominant mechanism of floodplain and delta-plain aggradation. Geology 43, 875–878 (2015).

    Article 

    Google Scholar 

  • Frederikse, T. et al. The causes of sea-level rise since 1900. Nature 584, 393–397 (2020).

    Article 
    CAS 

    Google Scholar 

  • Meade, R. H. & Moody, J. A. Causes for the decline of suspended‐sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process. 24, 35–49 (2010).

    Google Scholar 

  • Xu, K., Bentley, S. J., Day, J. W. & Freeman, A. M. A review of sediment diversion in the Mississippi River Deltaic Plain. Estuar. Coast. Shelf Sci. 225, 106241 (2019).

    Article 

    Google Scholar 

  • Vogel, H. D. Report on control of floods of the Lower Mississippi River, Annex no. 5, Basic data Mississippi River. House Doc. 798, 61–137 (1930).

  • Craig, N. J., Turner, R. E. & Day, J. W. Land loss in coastal Louisiana (U.S.A.). Environ. Manage. 3, 133–144 (1979).

    Article 

    Google Scholar 

  • Ko, J.-Y. & Day, J. W. A review of ecological impacts of oil and gas development on coastal ecosystems in the Mississippi Delta. Ocean Coast. Manage. 47, 597–623 (2004).

    Article 

    Google Scholar 

  • Penland, S., Beall, A. D., Britsch, L. D. & Jeffress, W. S. Geologic classification of coastal land loss between 1932 and 1990 in the Mississippi River Delta Plain, Southeastern Louisiana. Gulf Coast Assoc. Geol. Soc. Trans. 52, 799–807 (2002).

    Google Scholar 

  • Turner, R. Coastal wetland subsidence arising from local hydrologic manipulations. Estuaries 27, 265–272 (2004).

    Article 

    Google Scholar 

  • Nienhuis, J. H., Törnqvist, T. E. & Erkens, G. Altered surface hydrology as a potential mechanism for subsidence in coastal Louisiana. Proc. IAHS 382, 333–337 (2020).

  • Morton, R. A., Bernier, J. C. & Barras, J. A. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environ. Geol. 50, 261–274 (2006).

  • Karegar, M. A., Dixon, T. H. & Malservisi, R. A three-dimensional surface velocity field for the Mississippi Delta: implications for coastal restoration and flood potential. Geology 43, 519–522 (2015).

    Article 

    Google Scholar 

  • Gambolati, G. & Teatini, P. Geomechanics of subsurface water withdrawal and injection. Water Resour. Res. 51, 3922–3955 (2015).

    Article 

    Google Scholar 

  • Chang, C., Mallman, E. & Zoback, M. Time-dependent subsidence associated with drainage-induced compaction in Gulf of Mexico shales bounding a severely depleted gas reservoir. AAPG Bull. 98, 1145–1159 (2014).

    Article 

    Google Scholar 

  • Guzy, A. & Malinowska, A. A. State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal. Water 12, 2051 (2020).

    Article 

    Google Scholar 

  • Ortiz, A. C., Roy, S. & Edmonds, D. A. Land loss by pond expansion on the Mississippi River Delta Plain. Geophys. Res. Lett. 44, 3635–3642 (2017).

    Article 

    Google Scholar 

  • Mariotti, G. Revisiting salt marsh resilience to sea level rise: are ponds responsible for permanent land loss? J. Geophys. Res. Earth Surf. 121, 1391–1407 (2016).

    Article 

    Google Scholar 

  • Louisiana’s Comprehensive Master Plan for a Sustainable Coast. Coastal Protection and Restoration Authority https://coastal.la.gov/wp-content/uploads/2023/01/230105_CPRA_MP-Draft_Final-for-web_spreads-main.pdf (2023).

  • Siverd, C. G. et al. Hydrodynamic storm surge model simplification via application of land to water isopleths in coastal Louisiana. Coast. Eng. 137, 28–42 (2018).

    Article 

    Google Scholar 

  • Twilley, R. R. et al. Co-evolution of wetland landscapes, flooding, and human settlement in the Mississippi River Delta Plain. Sustain. Sci. https://doi.org/10.1007/s11625-016-0374-4 (2016).

  • Edmonds, D. A. et al. in Treatise on Geomorphology 2nd edn (ed. Shroder, J. F.) 110–140 (Academic Press, 2022).

  • Xu, K., Harris, C. K., Hetland, R. D. & Kaihatu, J. M. Dispersal of Mississippi and Atchafalaya sediment on the Texas–Louisiana shelf: model estimates for the year 1993. Cont. Shelf Res. 31, 1558–1575 (2011).

    Article 

    Google Scholar 

  • Baptist, M. et al. On inducing equations for vegetation resistance. J. Hydraul. Res. 45, 435–450 (2007).

    Article 

    Google Scholar 

  • Hopkinson, C. S., Morris, J. T., Fagherazzi, S., Wollheim, W. M. & Raymond, P. A. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. J. Geophys. Res. Biogeosci. 123, 2444–2465 (2018).

    Article 
    CAS 

    Google Scholar 

  • Danielson, J. et al. Topobathymetric Model of the Northern Gulf of Mexico, 1885 to 2021 (USGS, 2022); https://doi.org/10.5066/P99JULDN

  • Bomer, E. J. et al. Deltaic morphodynamics and stratigraphic evolution of Middle Barataria Bay and Middle Breton Sound regions, Louisiana, USA: implications for river-sediment diversions. Estuar. Coast. Shelf Sci. 224, 20–33 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wolinsky, M., Edmonds, D. A., Martin, J. M. & Paola, C. Delta allometry: growth laws for river deltas. Geophys. Res. Lett. 37, L21403 (2010).

    Article 

    Google Scholar 

  • Mariotti, G., Elsey-Quirk, T., Bruno, G. & Valentine, K. Mud-associated organic matter and its direct and indirect role in marsh organic matter accumulation and vertical accretion. Limnol. Oceanogr. 65, 2627–2641 (2020).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Local environment drives rapid shifts in composition and phylogenetic clustering of seagrass microbiomes

    3 Questions: Antje Danielson on energy education and its role in climate action