in

Origination of the modern-style diversity gradient 15 million years ago

  • Fine, P. V. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).

    Article 

    Google Scholar 

  • Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).

    Article 

    Google Scholar 

  • Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Crame, J. A. Taxonomic diversity gradients through geological time. Divers Distrib. 7, 175–189 (2011).

    Google Scholar 

  • Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Powell, M. G. Latitudinal diversity gradients for brachiopod genera during late Palaeozoic time: links between climate, biogeography and evolutionary rates. Glob. Ecol. Biogeogr. 16, 519–528 (2007).

    Article 

    Google Scholar 

  • Powell, M. G., Beresford, V. P. & Colaianne, B. A. The latitudinal position of peak marine diversity in living and fossil biotas. J. Biogeogr. 39, 1687–1694 (2012).

    Article 

    Google Scholar 

  • Hillebrand, H. Strength, slope and variability of marine latitudinal gradients. Mar. Ecol. Prog. Ser. 273, 251–267 (2004).

    Article 
    ADS 

    Google Scholar 

  • Beaugrand, G., Rombouts, I. & Kirby, R. R. Towards an understanding of the pattern of biodiversity in the oceans. Glob. Ecol. Biogeogr. 22, 440–449 (2013).

    Article 

    Google Scholar 

  • Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).

    Article 

    Google Scholar 

  • Saupe, E. E. et al. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat. Ecol. Evol. 3, 1419–1429 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Stehli, F. G., Douglas, R. G. & Newell, N. D. Generation and maintenance of gradients in taxonomic diversity. Science 164, 947–949 (1969).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 4000, 749–752 (1999).

    Article 
    ADS 

    Google Scholar 

  • Klopfer, P. H. Environmental determinants of faunal diversity. Am. Nat. 93, 337–342 (1959).

    Article 

    Google Scholar 

  • Haffer, J. & Prance, G. T. Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16, 579–607 (2001).

    Google Scholar 

  • Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dobzhansky, T. Evolution in the tropics. Am. Sci. 38, 209–221 (1950).

    Google Scholar 

  • Williams, C. B. Patterns in the Balance of Nature (Academic Press, 1964).

  • Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

    Article 

    Google Scholar 

  • Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).

    Article 

    Google Scholar 

  • Currie, D. J. Energy and large-scale patterns of animal and plant species richness. Am. Nat. 137, 27–49 (1991).

    Article 

    Google Scholar 

  • Connell, J. H. & Orias, E. The ecological regulation of species diversity. Am. Nat. 98, 399–414 (1964).

    Article 

    Google Scholar 

  • Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).

  • Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yasuhara, M. & Deutsch, C. A. Paleobiology provides glimpses of future ocean. Science 375, 25–26 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yasuhara, M. et al. Time machine biology cross-timescale integration of ecology, evolution, and oceanography. Oceanography 33, 16–28 (2020).

    Article 

    Google Scholar 

  • Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Sabouni, N., Kucera, M. & Schmidt, D. N. Vertical niche separation control of diversity and size disparity in planktonic foraminifera. Mar. Micropaleontol. 63, 75–90 (2007).

    Article 
    ADS 

    Google Scholar 

  • Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Weiner, A., Aurahs, R., Kurasawa, A., Kitazato, H. & Kučera, M. Vertical niche partitioning between cryptic sibling species of a cosmopolitan marine planktonic protist. Mol. Ecol. 21, 4063–4073 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Schneider, E. & Kennett, J. P. Segregation and speciation in the Neogene planktonic foraminiferal clade Globoconella. Paleobiology 25, 383–395 (1999).

    Article 

    Google Scholar 

  • Raja, N. B. & Kiessling, W. Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. Biol. Sci. 288, 20210545 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen, A. P. & Gillooly, J. F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9, 947–954 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–886 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer-Verlag, 2017).

  • Ruddimann, W. F. Recent planktonic foraminifera: dominance and diversity in North Atlantic surface sediments. Science 164, 1164–1167 (1969).

    Article 
    ADS 

    Google Scholar 

  • Bé, A. W. H. & Tolderlund, D. S. in Micropaleontology of Marine Bottom Sediments (eds Funnell, B. M. & Riedel, W. K.) 105–149 (Cambridge Univ. Press, 1971).

  • Sibert, E., Norris, R., Cuevas, J. & Graves, L. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change. Proc. Biol. Sci. 283, 20160189 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Worm, B. & Tittensor, D. P. A Theory of Global Biodiversity (Princeton Univ. Press, 2018).

  • Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Boscolo-Galazzo, F. et al. Late Neogene evolution of modern deep-dwelling plankton. Biogeosciences 19, 743–762 (2022).

    Article 
    ADS 

    Google Scholar 

  • Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226–250 (2016).

    Article 
    ADS 

    Google Scholar 

  • Gyldenfeldt, A.-B. V., Carstens, J. & Meincke, J. Estimation of the catchment area of a sediment trap by means of current meters and foraminiferal tests. Deep Sea Res. Part II 47, 1701–1717 (2000).

    Article 
    ADS 

    Google Scholar 

  • Qiu, Z., Doglioli, A. M. & Carlotti, F. Using a Lagrangian model to estimate source regions of particles in sediment traps. Sci. China Earth Sci. 57, 2447–2456 (2014).

    Article 
    ADS 

    Google Scholar 

  • Siegel, D. A. & Deuser, W. G. Trajectories of sinking particles in the Sargasso Sea: modeling of statistical funnels above deep-ocean sediment traps. Deep Sea Res. Part I 44, 1519–1541 (1997).

    Article 

    Google Scholar 

  • Waniek, J., Koeve, W. & Prien, R. D. Trajectories of sinking particles and the catchment areas above sediment traps in the Northeast Atlantic. J. Mar. Res. 58, 983–1006 (2000).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org (R Foundation for Statistical Computing, 2019).

  • Alroy, J. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol. 48, 107–118 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marcot, J. D. The fossil record and macroevolutionary history of North American ungulate mammals: standardizing variation in intensity and geography of sampling. Paleobiology 40, 238–255 (2014).

    Article 

    Google Scholar 

  • Gaston, K. J., Williams, P. H., Eggleton, P. & Humphries, C. J. Large scale patterns of biodiversity: spatial variation in family richness. Proc. R. Soc. Lond. B 260, 149–154 (1995).

    Article 
    ADS 

    Google Scholar 

  • Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geosci. Model Dev. 10, 3715–3743 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cox, P. M. et al. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn. 15, 183–203 (1999).

    Article 

    Google Scholar 

  • Sagoo, N., Valdes, P., Flecker, R. & Gregoire, L. J. The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions? Phil. Trans. R. Soc. A 371, 20130123 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Kiehl, J. T. & Shields, C. A. Sensitivity of the Palaeocene–Eocene thermal maximum climate to cloud properties. Phil. Trans. R. Soc. A 371, 20130093 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Cox, M. D. A Primitive Equation, 3-Dimensional Model of the Ocean. GFDL Ocean Group Technical Report No. 1 (GFDL Princeton Univ., 1984).

  • Collins, M., Tett, S. F. B. & Cooper, C. The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn. 17, 61–81 (2001).

    Article 

    Google Scholar 

  • Farnsworth, A. et al. Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2019).

    Article 
    ADS 

    Google Scholar 

  • Valdes, P. J., Scotese, C. R. & Lunt, D. J. Deep ocean temperatures through time. Clim. Past 17, 1483–1506 (2021).

    Article 

    Google Scholar 

  • Farnsworth, A. et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 5, eaax1697 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, L. A., Mannion, P. D., Farnsworth, A., Bragg, F. & Lunt, D. J. Climatic and tectonic drivers shaped the tropical distribution of coral reefs. Nat. Commun. 13, 3120 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scotese, C. R. & Wright, N. PALEOMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic. Zenodo https://doi.org/10.5281/zenodo.5460860 (2018).

  • Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Farnsworth, A. et al. Paleoclimate model-derived thermal lapse rates: towards increasing precision in paleoaltimetry studies. Earth Planet. Sci. Lett. 564, 116903 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bahcall, J. N., Pinsonneault, M. H. & Basu, S. Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990–1012 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).

    Article 
    ADS 

    Google Scholar 

  • Kraus, E. B. & Turner, J. S. A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus 19, 98–105 (1967).

    ADS 

    Google Scholar 

  • Foreman, S. J. The Ocean Model Report. Unified Model Documentaiton Paper Number 40 (The Met Office, 2005).

  • HH: Statistical Analysis and Data Display: Heiberger and Holland. R package version 3.1-47 (2022).

  • Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • Bivand, R., Millo, G. & Piras, G. A review of software for spatial econometrics in R. Mathematics 9, 1276 (2021).

    Article 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • Cooper, N. & Purvis, A. Body size evolution in mammals: complexity in tempo and mode. Am. Nat. 175, 727–738 (2010).

    Article 
    PubMed 

    Google Scholar 

  • geosphere: Spherical Trigonometry. R package version 1.5-14 (2021).

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020).

  • Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).

    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Responsive design meets responsibility for the planet’s future

    Featured video: Investigating our blue ocean planet