Fine, P. V. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).
Google Scholar
Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
Google Scholar
Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).
Google Scholar
Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).
Google Scholar
Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).
Google Scholar
Crame, J. A. Taxonomic diversity gradients through geological time. Divers Distrib. 7, 175–189 (2011).
Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).
Google Scholar
Powell, M. G. Latitudinal diversity gradients for brachiopod genera during late Palaeozoic time: links between climate, biogeography and evolutionary rates. Glob. Ecol. Biogeogr. 16, 519–528 (2007).
Google Scholar
Powell, M. G., Beresford, V. P. & Colaianne, B. A. The latitudinal position of peak marine diversity in living and fossil biotas. J. Biogeogr. 39, 1687–1694 (2012).
Google Scholar
Hillebrand, H. Strength, slope and variability of marine latitudinal gradients. Mar. Ecol. Prog. Ser. 273, 251–267 (2004).
Google Scholar
Beaugrand, G., Rombouts, I. & Kirby, R. R. Towards an understanding of the pattern of biodiversity in the oceans. Glob. Ecol. Biogeogr. 22, 440–449 (2013).
Google Scholar
Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).
Google Scholar
Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).
Google Scholar
Saupe, E. E. et al. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat. Ecol. Evol. 3, 1419–1429 (2019).
Google Scholar
Stehli, F. G., Douglas, R. G. & Newell, N. D. Generation and maintenance of gradients in taxonomic diversity. Science 164, 947–949 (1969).
Google Scholar
Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 4000, 749–752 (1999).
Google Scholar
Klopfer, P. H. Environmental determinants of faunal diversity. Am. Nat. 93, 337–342 (1959).
Google Scholar
Haffer, J. & Prance, G. T. Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16, 579–607 (2001).
Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).
Google Scholar
Dobzhansky, T. Evolution in the tropics. Am. Sci. 38, 209–221 (1950).
Williams, C. B. Patterns in the Balance of Nature (Academic Press, 1964).
Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).
Google Scholar
Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).
Google Scholar
Currie, D. J. Energy and large-scale patterns of animal and plant species richness. Am. Nat. 137, 27–49 (1991).
Google Scholar
Connell, J. H. & Orias, E. The ecological regulation of species diversity. Am. Nat. 98, 399–414 (1964).
Google Scholar
Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).
Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).
Google Scholar
Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).
Google Scholar
Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).
Google Scholar
Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).
Google Scholar
Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).
Google Scholar
Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).
Google Scholar
Yasuhara, M. & Deutsch, C. A. Paleobiology provides glimpses of future ocean. Science 375, 25–26 (2022).
Google Scholar
Yasuhara, M. et al. Time machine biology cross-timescale integration of ecology, evolution, and oceanography. Oceanography 33, 16–28 (2020).
Google Scholar
Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).
Google Scholar
Al-Sabouni, N., Kucera, M. & Schmidt, D. N. Vertical niche separation control of diversity and size disparity in planktonic foraminifera. Mar. Micropaleontol. 63, 75–90 (2007).
Google Scholar
Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).
Google Scholar
Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).
Google Scholar
Weiner, A., Aurahs, R., Kurasawa, A., Kitazato, H. & Kučera, M. Vertical niche partitioning between cryptic sibling species of a cosmopolitan marine planktonic protist. Mol. Ecol. 21, 4063–4073 (2012).
Google Scholar
Schneider, E. & Kennett, J. P. Segregation and speciation in the Neogene planktonic foraminiferal clade Globoconella. Paleobiology 25, 383–395 (1999).
Google Scholar
Raja, N. B. & Kiessling, W. Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. Biol. Sci. 288, 20210545 (2021).
Google Scholar
Allen, A. P. & Gillooly, J. F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9, 947–954 (2006).
Google Scholar
Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–886 (2004).
Google Scholar
Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer-Verlag, 2017).
Ruddimann, W. F. Recent planktonic foraminifera: dominance and diversity in North Atlantic surface sediments. Science 164, 1164–1167 (1969).
Google Scholar
Bé, A. W. H. & Tolderlund, D. S. in Micropaleontology of Marine Bottom Sediments (eds Funnell, B. M. & Riedel, W. K.) 105–149 (Cambridge Univ. Press, 1971).
Sibert, E., Norris, R., Cuevas, J. & Graves, L. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change. Proc. Biol. Sci. 283, 20160189 (2016).
Google Scholar
Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).
Google Scholar
Worm, B. & Tittensor, D. P. A Theory of Global Biodiversity (Princeton Univ. Press, 2018).
Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).
Google Scholar
Boscolo-Galazzo, F. et al. Late Neogene evolution of modern deep-dwelling plankton. Biogeosciences 19, 743–762 (2022).
Google Scholar
Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).
Google Scholar
Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226–250 (2016).
Google Scholar
Gyldenfeldt, A.-B. V., Carstens, J. & Meincke, J. Estimation of the catchment area of a sediment trap by means of current meters and foraminiferal tests. Deep Sea Res. Part II 47, 1701–1717 (2000).
Google Scholar
Qiu, Z., Doglioli, A. M. & Carlotti, F. Using a Lagrangian model to estimate source regions of particles in sediment traps. Sci. China Earth Sci. 57, 2447–2456 (2014).
Google Scholar
Siegel, D. A. & Deuser, W. G. Trajectories of sinking particles in the Sargasso Sea: modeling of statistical funnels above deep-ocean sediment traps. Deep Sea Res. Part I 44, 1519–1541 (1997).
Google Scholar
Waniek, J., Koeve, W. & Prien, R. D. Trajectories of sinking particles and the catchment areas above sediment traps in the Northeast Atlantic. J. Mar. Res. 58, 983–1006 (2000).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org (R Foundation for Statistical Computing, 2019).
Alroy, J. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol. 48, 107–118 (1999).
Google Scholar
Marcot, J. D. The fossil record and macroevolutionary history of North American ungulate mammals: standardizing variation in intensity and geography of sampling. Paleobiology 40, 238–255 (2014).
Google Scholar
Gaston, K. J., Williams, P. H., Eggleton, P. & Humphries, C. J. Large scale patterns of biodiversity: spatial variation in family richness. Proc. R. Soc. Lond. B 260, 149–154 (1995).
Google Scholar
Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geosci. Model Dev. 10, 3715–3743 (2017).
Google Scholar
Cox, P. M. et al. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn. 15, 183–203 (1999).
Google Scholar
Sagoo, N., Valdes, P., Flecker, R. & Gregoire, L. J. The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions? Phil. Trans. R. Soc. A 371, 20130123 (2013).
Google Scholar
Kiehl, J. T. & Shields, C. A. Sensitivity of the Palaeocene–Eocene thermal maximum climate to cloud properties. Phil. Trans. R. Soc. A 371, 20130093 (2013).
Google Scholar
Cox, M. D. A Primitive Equation, 3-Dimensional Model of the Ocean. GFDL Ocean Group Technical Report No. 1 (GFDL Princeton Univ., 1984).
Collins, M., Tett, S. F. B. & Cooper, C. The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn. 17, 61–81 (2001).
Google Scholar
Farnsworth, A. et al. Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2019).
Google Scholar
Valdes, P. J., Scotese, C. R. & Lunt, D. J. Deep ocean temperatures through time. Clim. Past 17, 1483–1506 (2021).
Google Scholar
Farnsworth, A. et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 5, eaax1697 (2019).
Google Scholar
Jones, L. A., Mannion, P. D., Farnsworth, A., Bragg, F. & Lunt, D. J. Climatic and tectonic drivers shaped the tropical distribution of coral reefs. Nat. Commun. 13, 3120 (2022).
Google Scholar
Scotese, C. R. & Wright, N. PALEOMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic. Zenodo https://doi.org/10.5281/zenodo.5460860 (2018).
Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).
Google Scholar
Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).
Google Scholar
Farnsworth, A. et al. Paleoclimate model-derived thermal lapse rates: towards increasing precision in paleoaltimetry studies. Earth Planet. Sci. Lett. 564, 116903 (2021).
Google Scholar
Bahcall, J. N., Pinsonneault, M. H. & Basu, S. Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990–1012 (2001).
Google Scholar
Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).
Google Scholar
Kraus, E. B. & Turner, J. S. A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus 19, 98–105 (1967).
Google Scholar
Foreman, S. J. The Ocean Model Report. Unified Model Documentaiton Paper Number 40 (The Met Office, 2005).
HH: Statistical Analysis and Data Display: Heiberger and Holland. R package version 3.1-47 (2022).
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).
Google Scholar
Bivand, R., Millo, G. & Piras, G. A review of software for spatial econometrics in R. Mathematics 9, 1276 (2021).
Google Scholar
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).
Google Scholar
Cooper, N. & Purvis, A. Body size evolution in mammals: complexity in tempo and mode. Am. Nat. 175, 727–738 (2010).
Google Scholar
geosphere: Spherical Trigonometry. R package version 1.5-14 (2021).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020).
Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).
Google Scholar
Source: Ecology - nature.com