in

Partial COVID-19 closure of a national park reveals negative influence of low-impact recreation on wildlife spatiotemporal ecology

  • Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A.. Can. J. Zool. 79, 1401–1409 (2001).

    Article 

    Google Scholar 

  • Laundré, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: Ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).

    Article 

    Google Scholar 

  • Suraci, J. P., Clinchy, M., Zanette, L. Y. & Wilmers, C. C. Fear of humans as apex predators has landscape-scale impacts from mountain lions to mice. Ecol. Lett. 22, 1578–1586 (2019).

    Article 

    Google Scholar 

  • Miller, S. G., Knight, R. L. & Miller, C. K. Wildlife responses to pedestrians and dogs. Wildl. Soc. B. 29, 124–132 (2001).

    Google Scholar 

  • Larson, C., Reed, S., Merenlender, A. M. & Crooks, K. R. Effects of recreation on animals revealed as widespread through a global systemic review. PLoS ONE 11, 1–21 (2016).

    Article 

    Google Scholar 

  • Balmford, A. et al. Walk on the wild side: Estimating the global magnitude of visits to protected areas. PLoS Biol 13, 1–6 (2015).

    Article 

    Google Scholar 

  • Baker, A. D. & Leberg, P. L. Impacts of human recreation on carnivores in protected areas. PLoS Biol 13, 1–21 (2018).

    Google Scholar 

  • Schulze, K. et al. An assessment of threats to terrestrial protected areas. Cons. Lett. 11, 1–10 (2018).

    Article 

    Google Scholar 

  • Suraci, J. P. et al. Disturbance type and species life history predict mammal responses to humans. Glob. Change Biol. 27, 3718–3731 (2021).

    Article 
    CAS 

    Google Scholar 

  • Reilly, M. L., Tobler, M. W., Sonderegger, D. L. & Beier, P. Spatial and temporal response of wildlife to recreational activities in the San Francisco Bay ecoregion. Biol. Conserv. 207, 117–126 (2017).

    Article 

    Google Scholar 

  • Naidoo, R. & Burton, A. C. Relative effects of recreational activities on a temperate terrestrial wildlife assemblage. Conserv. Sci. Pract. 2, e271 (2020).

    Google Scholar 

  • Nickel, B. A., Suraci, J. P., Allen, M. L. & Wilmers, C. C. Human presence and human footprint have non-equivalent effects on wildlife spatiotemporal habitat use. Biol. Conserv. 241, 1–11 (2020).

    Article 

    Google Scholar 

  • Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).

    Article 

    Google Scholar 

  • Poggiato, G. et al. On the interpretations of joint modeling in community ecology. TREE 36, 391–401 (2021).

    Google Scholar 

  • Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 1–6 (2020).

    Article 

    Google Scholar 

  • Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 4, 1156–1159 (2020).

    Article 

    Google Scholar 

  • Wang, Y., Allen, M. L. & Wilmers, C. C. Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz Mountains of California. Biol. Conserv. 190, 23–33 (2015).

    Article 

    Google Scholar 

  • Lewis, J. S. et al. Human activity influences wildlife populations and activity patterns: implications for spatial and temporal refuges. Ecosphere 12, 1–16 (2021).

    Article 

    Google Scholar 

  • Corradini, A. et al. Effects of cumulated outdoor activity on wildlife habitat use. Biol. Conserv. 253, 108818 (2021).

    Article 

    Google Scholar 

  • Soule, M. E. et al. Dynamics of rapid extinctions of chaparral-requiring birds in urban habitat islands. Conserv. Biol. 2, 75–92 (1988).

    Article 

    Google Scholar 

  • Feit, B., Feit, A. & Letnic, M. Apex predators decouple population dynamics between mesopredators and their prey. Ecosystems 22, 1606–1617 (2019).

    Article 

    Google Scholar 

  • Berger, J. Fear, human shields and the redistribution of prey and predators in protected areas. Biol. Lett. 3, 620–623 (2007).

    Article 

    Google Scholar 

  • Sarmento, W., Biel, M. & Berger, J. Redistribution, human shields and loss of migratory behavior in the crown of the continent. Intermt. J. Sci. 22, 2016 (2016).

    Google Scholar 

  • Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Microsoft. AI for Earth camera trap image processing API (2020).

  • Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: an R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462 (2016).

    Article 

    Google Scholar 

  • MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G. & Franklin, A. B. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207. https://doi.org/10.1890/02-3090 (2003).

    Article 

    Google Scholar 

  • MacKenzie, D. I. et al. Occupancy estimation and modeling (Elsevier, 2018).

    Google Scholar 

  • Fiske, I. & Chandler, R. unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Soft. 4, 1–23 (2011).

    Google Scholar 

  • Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-1 (2020). https://cran.r-project.org/package=AICcmodavg.

  • Ladle, A., Steenweg, R., Shepherd, B. & Boyce, M. S. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence. PLoS ONE 13, 1–16 (2018).

    Article 

    Google Scholar 

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Agostinelli, C. & Lund, U. R package ‘circular’: circular statistics (version 0.4-94.1 (2022). https://r-forge.r-project.org/projects/circular/.

  • Santos, F. et al. Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS ONE 14, 1–23 (2019).

    Article 

    Google Scholar 

  • Olea, P. P., Iglesias, N. & Mateo-Tomás, P. Temporal resource partitioning mediates vertebrate coexistence at carcasses: the role of competitive and facilitative interactions. Basic Appl. Ecol. 60, 63–75 (2022).

    Article 

    Google Scholar 

  • Shilling, F. et al. A reprieve from US wildlife mortality on roads during the COVID-19 pandemic. Biol. Conserv. 256, 109013 (2021).

    Article 

    Google Scholar 

  • Behera, A. K. et al. The impacts of COVID-19 lockdown on wildlife in Deccan Plateau. India. Sci. Total Environ. 822, 153268 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Procko, M., Naidoo, R., LeMay, V. & Burton, A. C. Human impacts on mammals in and around a protected area before, during, and after COVID-19 lockdowns. Conserv. Sci. Pract. 4, e12743. https://doi.org/10.1111/csp2.12743 (2022).

    Article 

    Google Scholar 

  • Sanderfoot, O. V., Kaufman, J. D. & Gardner, B. Drivers of avian habitat use and detection of backyard birds in the Pacific Northwest during COVID-19 pandemic lockdowns. Sci. Rep. 12, 12655 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nevin, J. A. & Grace, R. C. Behavioral momentum and the law of effect. Behav. Brain Sci. 23, 73–90 (2000).

    Article 
    CAS 

    Google Scholar 

  • Kautz, T. M. et al. Large carnivore response to human road use suggests a landscape of coexistence. Glob. Ecol. Conserv. 30, e01772 (2021).

    Article 

    Google Scholar 

  • Frey, S., Volpe, J. P., Heim, N. A., Paczkowski, J. & Fisher, J. T. Move to nocturnality not a universal trend in carnivore species on disturbed landscapes. Oikos 129, 1128–1140 (2020).

    Article 

    Google Scholar 

  • Schwartz, C. C. et al. Contrasting activity patterns of sympatric and allopatric black and grizzly bears. J. Wildl. Manag. 74, 1628–1638 (2010).

    Article 

    Google Scholar 

  • Fortin, J. K. et al. Impacts of human recreation on brown bears (Ursus arctos): a review and new management tool. PLoS ONE 11, 1–26 (2016).

    Article 

    Google Scholar 

  • Kendall, K. C. et al. Grizzly bear density in Glacier National Park. Montana. J. Wildl. Manag. 72, 1693–1705 (2008).

    Article 

    Google Scholar 

  • Stetz, J. B., Kendall, K. C. & Macleod, A. C. Black bear density in Glacier National Park, Montana. Wildl. Soc. Bull. 38, 60–70 (2014).

    Article 

    Google Scholar 

  • Sargeant, A. B. & Allen, S. H. Observed interactions between coyotes and red foxes. J. Mamm. 70, 631–633 (1989).

    Article 

    Google Scholar 

  • Newsome, T. M. & Ripple, W. J. A continental scale trophic cascade from wolves through coyotes to foxes. J. Anim. Ecol. 84, 49–59 (2015).

    Article 

    Google Scholar 

  • Naylor, L. M., Wisdom, M. J. & Anthony, R. G. Behavioral responses of North American elk to recreational activity. J. Wildl. Manag. 73, 328–338 (2009).

    Article 

    Google Scholar 

  • Sarmento, W. M. & Berger, J. Human visitation limits the utility of protected areas as ecological baselines. Biol. Conserv. 212, 316–326 (2017).

    Article 

    Google Scholar 

  • Garber, S. D. & Burger, J. A 20-year study documenting the relationship between turtle decline and human recreation. Ecol. Appl. 5, 1151–1162 (1995).

    Article 

    Google Scholar 

  • Winter, P. L., Selin, S., Cerveny, L. & Bricker, K. Outdoor recreation, nature-based tourism, and sustainability. Sustainability 12, 1–12 (2020).

    Google Scholar 

  • Geffroy, B., Samia, D. S. M., Bessa, E. & Blumstein, D. T. How nature-based tourism might increase prey vulnerability to predators. TREE 30, 755–765 (2015).

    Google Scholar 

  • Eagles, P. F. J., McCool, S. F. & Haynes, C. D. Sustainable Tourism in Protected Areas: Guidelines for Planning and Management Vol. 8 (IUCN, 2002).

    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    Study: Extreme heat is changing habits of daily life

    Computers that power self-driving cars could be a huge driver of global carbon emissions