in

Effect of microhabitat variability on restoration success of swamp willow Salix myrtilloides L. population


Abstract

Maintaining local populations of rare boreal plant species living at the edge of their geographic ranges is particularly important as the climate continues to warm. In many European countries, their numbers have declined dramatically over the past few decades. In Poland, relict willow species are particularly at risk of extinction, including the swamp willow Salix myrtilloides. During a field experiment to reintroduce S. myrtilloides, 240 seedlings were planted within the quaking bog surrounding Lake Wiejki on the outskirts of the Knyszyńska Forest (northeastern Poland). Five years after the seedlings were introduced into the wild, the size of the population had increased to 272 individuals, probably due to increased vegetative proliferation caused by the browsing by moose. The flowering efficiency of individuals was initially relatively high (40.82%) but decreased almost twofold (24.27%) between 2019 and 2024. Monitoring over five years indicated that the height of the herb layer and the cover of competing species could affect the height of the aboveground shoots of S. myrtilloides. We found a significant statistical relationship between soil water pH and population restoration success, with lower pH promoted vegetative regrowth while limiting flowering.

Data availability

Data is provided within the manuscript or supplementary information files.

References

  1. Heijmans, M. M. P. D., Mauquoy, D., van Geel, B. & Berendse, F. Long-term effects of climate change on vegetation and carbon dynamics in peat bogs. J. Veg. Sci. 19, 307–320. https://doi.org/10.3170/2008-8-18368 (2008).

    Google Scholar 

  2. Page, S. E. & Baird, A. J. Peatlands and global change: Response and resilience. Annu. Rev. Environ. Resour. 41, 35–57. https://doi.org/10.1146/annurev-environ-110615-085520 (2016).

    Google Scholar 

  3. Deng, Y., Boodoo, K. S., Knorr, K.-H. & Glatzel, S. Assessing the impact of land use on peat degradation in bogs in the Enns Valley, Austria. Soil Use Manag. 41, e70013 (2025).

    Google Scholar 

  4. Kolari, T. H. M., Kumpula, T., Verdonen, M., Forbes, B. C. & Tahvanainen, T. Reindeer grazing controls willows but has only minor effects on plant communities in Fennoscandian oroarctic mires. Arct. Antarct. Alp. Res. 51, 506–520. https://doi.org/10.1080/15230430.2019.1679940 (2019).

    Google Scholar 

  5. Lesica, P. & McCune, B. Decline of arctic-alpine plants at the southern margin of their range following a decade of climatic warming. J. Veg. Sci. 15, 679–690. https://doi.org/10.1111/j.1654-1103.2004.tb02310.x (2004).

    Google Scholar 

  6. Kotowski, W. & Piórkowski, H. The peatlands of the focal countries. In Poland in Strategy and Action Plan for Mire and Peatland Conservation in Central Europe (eds Bragg, O. & Lindsay, R.) 49–53 (Wetlands International, Wageningen, The Netherlands, 2003).

    Google Scholar 

  7. Lazdiņa, D. et al. Suitability of Latvia willow species and willow clones selected in Sweden for the establishment of energy wood plantations in Latvia. In Proceeding of 5th IUFRO Symposium “Wood Structure and Properties ’06”, Zvolen, Slovakia, 293–298 (2006).

  8. Gostyńska-Jakuszewska, M. & Lekavičius, A. Selected boreal and subboreal species in the flora of Poland and the Lithuanian SSR. Part. 1. Fragm. Flor. Geobot. 34, 299–314 (1989).

    Google Scholar 

  9. Kruszelnicki, J. & Gostyńska-Jakuszewska, M. Salix myrtilloides L. In Polish Red Data Book of Plants: Pteridophytes and Flowering Plants 3rd edn (eds Kaźmierczakowa, R. et al.) 81–83 (Polish Academy of Sciences, Institute of Nature Conservation, Kraków, Poland, 2014).

    Google Scholar 

  10. Käsermann, C. & Moser, D. M. Merkblätter Artenschutz – Blütenpflanzen und Farne. Bundesamt für Umwelt, Wald und Landschaft (BUWAL) (1999).

  11. Evarts-Bunders, P. Some rare and unclear willow (Salix L.) species in Latvia. Acta Biol. Univ. Daugavp. 1, 103–105 (2001).

    Google Scholar 

  12. Didukh, Y. P. Red data book of Ukraine: Vegetable kingdom. Afterword. Biodiv. Res. Conserv. 19, 87–92 (2010).

    Google Scholar 

  13. Bernátová, D. & Migra, V. Salix myrtilloides and Salix × onusta in Slovakia. Biologia 67, 659–662. https://doi.org/10.2478/s11756-012-0047-4 (2012).

    Google Scholar 

  14. Grulich, V. Red list of vascular plants of the Czech Republic: 3rd edition. Preslia 84, 631–645. https://doi.org/10.5555/20123395488 (2012).

    Google Scholar 

  15. Ishchuk, L. P. Analysis of willow (Salix L.) flora in Ukrainian Carpathians. J. Bot. 9, 50–55 (2017).

    Google Scholar 

  16. The German Red List Centre, (accessed 26 March 2025). https://www.rote-liste-zentrum.de/en/index.html.

  17. Świerkosz, K. & Boratyński, A. Chorological and synanthropodynamical analysis of trees and shrubs of the Stołowe Mts. (Middle Sudety). Dendrobiology 48, 75–85 (2002).

    Google Scholar 

  18. Kucharski, L. & Kloss, M. Contemporary vegetation of selected raised mires and its preservation. Monogr. Bot. 94, 37–64 (2005).

    Google Scholar 

  19. Churski, M. & Danielewicz, W. Salix myrtilloides in the north central Poland: Distribution, threats and conservation. Dendrobiology 60, 3–9 (2008).

    Google Scholar 

  20. Jackowiak, B., Celka, Z., Chmiel, J., Latowski, K. & Żukowski, W. Red list of vascular flora of Wielkopolska (Poland). Biodiv. Res. Conserv. 58, 95–127. https://doi.org/10.14746/biorc.2007.5-8.12 (2007).

    Google Scholar 

  21. Adamowski, W. The flora of vascular plants. In Białowieża National Park: Know It–Understand It–Protect It (eds Okołów, C. et al.) 59–72 (Białowieża National Park, Poland, 2009).

    Google Scholar 

  22. Cwener, A., Michalczuk, W. & Krawczyk, R. Red list vascular plants of the Lublin Region. Ann. Univ. Mariae Curie-Skłodowska Sect. C 71, 7–26 (2016).

    Google Scholar 

  23. Sotek, Z. Distribution paterns, history and dynamics of peatland vascular plants in Pomerania (NW Poland). Biodiv. Res. Conserv. 18, 1–82 (2010).

    Google Scholar 

  24. Serafin, A., Pogorzelec, M., Banach, B. & Mielniczuk, J. Habitat conditions of the endangered species: Salix myrtilloides in Eastern Poland. Dendrobiology 73, 55–64. https://doi.org/10.12657/denbio.073.006 (2015).

    Google Scholar 

  25. Pogorzelec, M. et al. Pollen viability of Salix myrtilloides L.: An endangered species in Poland. Acta Agrobot. 69, 1679. https://doi.org/10.5586/aa.1679 (2016).

    Google Scholar 

  26. Parzymies, M., Pogorzelec, M., Głębocka, K. & Śliwińska, E. Micropropagation protocol and genetic stability of the Salix myrtilloides plants cultivated in vitro. Biology 12, 168. https://doi.org/10.3390/biology12020168 (2023).

    Google Scholar 

  27. Pogorzelec, M., Głębocka, K., Hawrylak-Nowak, B. & Bronowicka-Mielniczuk, U. Assessment of chosen reproductive cycle processes and genetic diversity of Salix myrtilloides L. in wetlands of Polesie Lubelskie: The prospects of its survival in the region. Pol. J. Ecol. 63, 352–364. https://doi.org/10.3161/15052249PJE2015.63.3.006 (2015).

    Google Scholar 

  28. Kozel, P. et al. Specialised chemistry affects insect abundance but not overall community similarity in three rare shrub willows: Salix myrtilloides, S. repens and S. rosmarinifolia. Eur. J. Entomol. 119, 368–378. https://doi.org/10.14411/eje.2022.038 (2022).

    Google Scholar 

  29. Yu, L.-L., Zhang, X.-H., Shi, F.-X. & Mao, R. Effect of shrub encroachment on leaf nutrient resorption in temperate wetlands in the Sanjiang Plain of Northeast China. Ecol. Process. https://doi.org/10.1186/s13717-022-00413-w (2022).

    Google Scholar 

  30. Pogorzelec, M. & Banach, B. The occurrence of rare and protected plant species on the peat bog near Lake Bikcze (Łęczyńsko-Włodawskie Lakeland). Acta Agrobot. 61, 113–120 (2008).

    Google Scholar 

  31. Pogorzelec, M., Bronowicka-Mielniczuk, U., Banach, B., Szczurowska, A. & Serafin, A. Relict boreal willows (Salix lapponum and Salix myrtilloides) as an element of phytocoenoses overgrowing the water bodies in Eastern Poland. Appl. Ecol. Environ. Res. 12, 441–456 (2014).

    Google Scholar 

  32. Zalewska, E. D., Pogorzelec, M., Król, E. D. & Serafin, A. Fungi inhabiting the aboveground organs of downy willow (Salix lapponum L.) and swamp willow (Salix myrtilloides L.). Acta Mycol. 54, 1134. https://doi.org/10.5586/am.1134 (2019).

    Google Scholar 

  33. Ignatavicius, G. & Toleikiene, M. Optimisation of the conservation of rare and vulnerable plant species in the perspective of climate change in Lithuanian (nature) reserves. Arch. Environ. Prot. 43, 61–73. https://doi.org/10.1515/aep-2017-0032 (2017).

    Google Scholar 

  34. Bragg, O. & Lindsay, R. (eds) Strategy and Action Plan for Mire and Peatland Conservation in Central Europe (Wetlands International, Wageningen, The Netherlands, 2003).

    Google Scholar 

  35. Ren, H. et al. Wild plant species with extremely small populations require conservation and reintroduction in China. Ambio 41, 913–917. https://doi.org/10.1007/s13280-012-0284-3 (2012).

    Google Scholar 

  36. Vandepitte, K., Roldán-Ruiz, I., Jacquemyn, H. & Honnay, O. Extremely low genotypic diversity and sexual reproduction in isolated populations of the self-incompatible lily-of-the-valley (Convallaria majalis) and the role of the local forest environment. Ann. Bot. 105, 769–776. https://doi.org/10.1093/aob/mcq042 (2010).

    Google Scholar 

  37. Godefroid, S. et al. How successful are plant species reintroductions?. Biol. Conserv. 144, 672–682. https://doi.org/10.1016/j.biocon.2010.10.003 (2011).

    Google Scholar 

  38. Skálová, D. et al. Biotechnological methods of in vitro propagation in willows (Salix spp.). Cent. Eur. J. Biol. 7, 931–940. https://doi.org/10.2478/s11535-012-0069-5 (2012).

    Google Scholar 

  39. Pogorzelec, M., Parzymies, M., Banach-Albińska, B., Serafin, A. & Szczurowska, A. Experimental reintroduction of the boreal species Salix lapponum L. to refuges at the southern limit of its range: short-term results. Boreal Environ. Res. 25, 161–169 (2020).

    Google Scholar 

  40. Pogorzelec, M. et al. From ex situ cultivation to stands in natural habitats: Critical periods for plants during the reintroduction of Salix lapponum L. in Eastern Poland. J. Nat. Conserv. 67, 126172. https://doi.org/10.1016/j.jnc.2022.126172 (2022).

    Google Scholar 

  41. Kamocki, A. K., Kołos, A., Pogorzelec, M. & Ożgo, M. Microhabitat conditions and inter-species competition predict the successful restoration of declining relict species populations. Int. J. Environ. Res. Public Health 20, 608. https://doi.org/10.3390/ijerph20010608 (2023).

    Google Scholar 

  42. Watts, S. H. Montane willow scrub restoration in Scotland: reviewing 30 years of progress to reestablish the altitudinal treeline. Restor. Ecol. 33, e14290. https://doi.org/10.1111/rec.14290 (2025).

    Google Scholar 

  43. Gyurova, D. & Savev, S. Restoration and protection of the population of Salix pentandra L. and Galanthus elwesii Hook in Vitosha Nature Park. In Annuaire de l’Université de Sofia “St. Kliment Ohridski”, Faculte de Biologie, First National Conference of Reintroduction of Conservation-reliant Species, Sofia 2015, University Press, 54–62 (2016).

  44. Arciszewski, M. et al. The search for suitable habitats for endangered species at their historical sites–conditions for the success of Salix lapponum and Salix myrtilloides reintroduction. Int. J. Environ. Res. Public Health 20, 1133. https://doi.org/10.3390/ijerph20021133 (2023).

    Google Scholar 

  45. Mardon, D. K. Conserving montane willow scrub on Ben Lawers NNR. Bot. J. Scotl. 55, 189–203. https://doi.org/10.1080/03746600308685059 (2003).

    Google Scholar 

  46. Pogorzelec, M., Bronowicka-Mielniczuk, U., Serafin, A. & Parzymies, M. The importance of habitat selection for the reintroduction of the endangered Salix lapponum L. in eastern Poland. J. Nat. Conserv. 54, 125785. https://doi.org/10.1016/j.jnc.2020.125785 (2020).

    Google Scholar 

  47. Kułak, V., Longboat, S., Brunet, N. D., Shukla, M. & Saxena, P. In vitro technology in plant conservation: Relevance to biocultural diversity. Plants 11, 503. https://doi.org/10.3390/plants11040503 (2022).

    Google Scholar 

  48. Pence, V. C. Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell. Dev. Biol. Plant 47, 176–187. https://doi.org/10.1007/s11627-010-9323-6 (2011).

    Google Scholar 

  49. den Herder, M. D., Virtanen, R. & Roininen, H. Effects of reindeer browsing on tundra willow and its associated insect herbivores. J. Appl. Ecol. 41, 870–879. https://doi.org/10.1111/j.0021-8901.2004.00952.x (2004).

    Google Scholar 

  50. den Herder, M. D., Virtanen, R. & Roininen, H. Reindeer herbivory reduces willow growth and grouse forage in a forest-tundra ecotone. Basic Appl. Ecol. 9, 324–331. https://doi.org/10.1016/j.baae.2007.03.005 (2008).

    Google Scholar 

  51. van der Meijden, E., Wijn, M. & Verkaar, H. J. Defence and regrowth, alternative plant strategies in the struggle against herbivores. Oikos 51, 355–363. https://doi.org/10.2307/3565318 (1988).

    Google Scholar 

  52. Soudzilovskaia, N. A. et al. Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification. Ecology 91, 2716–2726. https://doi.org/10.1890/09-2095.1 (2010).

    Google Scholar 

  53. Banaszuk, H. Problems of glacial morphogenesis of North Podlasie Lowlands. Prace i Studia Geograficzne 64, 89–112 (2019).

    Google Scholar 

  54. Banaszuk, P. & Kamocki, A. Water conditions and soils. In Monograph of the Gorbacz Nature Reserve (ed. Banaszuk, P.) 31–43 (Polish Society for Bird Protection, Białowieża, Poland, 2014).

    Google Scholar 

  55. IMGW: Institute of Meteorology and Water Management National Research Institute, database (accessed 19 March 2025). https://danepubliczne.imgw.pl/en/.

  56. Climatic Water Balance: Institute of Cultivation and Fertilization in Puławy, database (accessed 25 February 2025). https://susza.iung.pulawy.pl/en/kbw/2024,14/

  57. Giraudeau-Potel, S., Tallack, R. & A’Hara, S. The Shetland relict willow project: investigating genetic diversity and creation of a clonal archive for future woodland planting. https://futurewoodlands.org.uk/wp-content/uploads/2024/09/20.-Shetland-Willows-Project-Grant-Report.pdf (2023).

Download references

Acknowledgements

We acknowledge the support of Regional Directorate for Environmental Protection in Białystok.

Funding

Polish Ministry of Science and Higher Education (Grant No. WZ/WB-IIŚ/3/2023 to Białystok University of Technology). The study was conducted in full compliance with the ethical codes and legislation of the Republic of Poland.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: A.K, A.K.K.; Formal analysis: A.K, A.K.K.; Investigation: A.K, A.K.K.; Methodology: A.K, A.K.K., P.B.; Visualisation: A.K, A.K.K., P.B.; Writing—original draft: A.K, A.K.K.; Writing—review and editing: A.K, A.K.K., P.B., A.W. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to
Aleksander Kołos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information 1.

Supplementary Information 2.

Supplementary Information 3.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Kołos, A., Kamocki, A.K., Banaszuk, P. et al. Effect of microhabitat variability on restoration success of swamp willow Salix myrtilloides L. population.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-33807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-33807-9

Keywords

  • Restoration effectiveness
  • Conservation management
  • Glacial relicts
  • Wetland biodiversity
  • Northeastern Poland


Source: Ecology - nature.com

Fish and coral communities shape elasmobranch reef use in southern Mozambique

Assessment of African grassland sustainability for livestock use by constructing a carrying capacity alert index

Back to Top