in

Hyperspectral proximal sensing shows clear relation between Spatial pattern of leaf traits and bacterial alpha diversity


Abstract

The phyllosphere bacteria play a crucial role in global greenhouse gas emissions and sequestration, but the spatial interactions between phyllosphere bacterial diversity, host leaf traits and environmental variation remain poorly understood. This gap is mainly due to methodological limitations in linking the spatial pattern of bacterial diversity to leaf traits. Here, we present machine learning models based on visible and near-infrared (VIS-NIR) leaf hyperspectral proximal sensing that are used to independently predict the phyllosphere bacterial alpha-diversity indices and leaf traits under different abiotic conditions for both sides of the leaf. We demonstrate that the models can effectively represent leaf traits and bacterial alpha-diversity indices for different abiotic environmental conditions. The cross-correlation of the spatial patterns as a result of the spatial application of the independent models reveals fine-scale associations between leaf traits and bacterial colonization patterns. Our findings highlight the great potential of hyperspectral proximal sensing for understanding the relationship between leaf bacterial richness and leaf resources within the leaf microecosystem. Ultimately, this will enhance our capacity to quantify the contribution of the leaf bacteria to the greenhouse gas balance of the forest canopy in a changing climate.

Data availability

The dataset used during the current study is available from the corresponding author upon reasonable request.

References

  1. Xiang, Q. et al. Microbial functional traits in phyllosphere are more sensitive to anthropogenic disturbance than in soil. Environ. Pollut. 265, 114954 (2020).

    Google Scholar 

  2. Galbally, I. E. & Kirstine, W. The production of methanol by flowering plants and the global cycle of methanol. J. Atmos. Chem. 43, 195 229 (2002).

    Google Scholar 

  3. Sohrabi, R., Paasch, B. C., Liber, J. A. & He, S. Y. Phyllosphere Microbiome. Annu. Rev. Plant Biol. 74, 539 568 (2023).

    Google Scholar 

  4. Zhu, Y. G. et al. Harnessing biological nitrogen fixation in plant leaves. Trends Plant Sci. 24, 1405 (2023).

    Google Scholar 

  5. Li, J. et al. From nature to urbanity: exploring phyllosphere Microbiome and functional gene responses to the anthropocene. New Phytol. 245, 591606 (2025).

    Google Scholar 

  6. Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F. & Bakken, L. R. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569 586 (2019).

    Google Scholar 

  7. Morris, C. E. & Kinkel, L. L. English. in, 365 375 (American Phytopathological Society (APS Press), 2002).

  8. Armitage, D. W. et al. Predictive ecology and management of phyllosphere microbial communities through cross-scale synthesis. Phytobiomes J. 7, 145150 (2023).

    Google Scholar 

  9. Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828 840 (2012).

    Google Scholar 

  10. Friesen, M. et al. Microbially mediated plant functional traits. Annual Rev. Ecol. Evol. Syst. 42, 23–46 (2011).

    Google Scholar 

  11. Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a Neotropical forest. Proc. Natl. Acad. Sci. U.S.A. 111, 13715–13720 (2014). Research Support, Non-U.S. Gov’t; Research Support, U.S. Gov’t, Non-P.H.S.

    Google Scholar 

  12. Bentley, B. L. & Carpenter, E. J. Direct transfer of newly-fixed nitrogen from free-living epiphyllou microorganisms to their host plant. Oecologia 63, 52–56 (1984).

    Google Scholar 

  13. Hisano, M., Searle, E. B. & Chen, H. Y. H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. Camb. Philos. Soc. 93, 439456 (2018).

    Google Scholar 

  14. Gowen, A., O’Donnell, C., Cullen, P., Downey, G. & Frias, J. Hyperspectral imaging an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18, 590 598 (2007).

    Google Scholar 

  15. Obermeier, W. A. et al. Grassland ecosystem services in a changing environment: the poential of hyperspectral monitoring. Remote Sens. Environ. 232, 111273 (2019).

    Google Scholar 

  16. Lehnert, L. W. et al. Hyperspectral data analysis in R: the Hsdar package. J. Stat. Softw. 89, 123 (2019).

    Google Scholar 

  17. Zhang, Y., Huang, L., Deng, G. & Wang, Y. Visual monitoring of fatty acid degradation during green tea storage by hyperspectral imaging. Foods 12, 282 (2023).

    Google Scholar 

  18. Barreto, A., Paulus, S., Varrelmann, M. & Mahlein, A. K. Hyperspectral imaging of symptoms induced by rhizoctonia Solani in sugar beet: comparison of input data and different machine learning algorithms. J. Plant Dis. Prot. 127, 441 451 (2020).

    Google Scholar 

  19. Niinemets, Keenan, T. F. & Hallik, L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytologist 205 Epub 2014 Oct. 16, 973993 (2015).

    Google Scholar 

  20. BaySpec, I. VIS-NIR Hyperspectral Camera. (2024) (Accessed: 2024-11-19).

  21. Papakonstantinou, A. et al. Airborne spectral reflectance dataset of submerged plastic targets in a coastal environment. Data 8, 19. https://doi.org/10.3390/data8010019 (2023).

  22. Hass, B. Calculating Reflectance and NDVI in Python n.d.

  23. Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Google Scholar 

  24. Demetriades-Shah, T. H., Steven, M. D. & Clark, J. A. High resolution derivative spectra in remote sensing. Remote Sens. Environ. 33, 55–64 (1990).

    Google Scholar 

  25. Cartelat, A. et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L). Field Crops Res. 91, 35–49 (2005).

    Google Scholar 

  26. Force-A (UP GmbH). Dualex R – A Device for Measuring Leaf Polyphenolics and Chlorophyll Content. (2024) (Accessed: 2024-11-19).

  27. Schroeder, A. B. et al. The ImageJ ecosystem: Open-source software for image visualization, processing, and analysis. Protein Sci. 30, 234–249 (2021).

    Google Scholar 

  28. Marenco, R. A., Antezana-Vera, S. A. & Nascimento, H. C. Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species. Photosynthetica 47, 184–190 (2009).

    Google Scholar 

  29. Gonzalez, A. et al. Qiita: rapid, web-enabled Microbiome meta-analysis. Nat. Methods. 15, 796–798 (2018).

    Google Scholar 

  30. Bolyen, E. et al. Reproducible, interactive, scalable and extensible Microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Google Scholar 

  31. Saary, P., Forslund, K., Bork, P. & Hildebrand, F. RTK: efficient rarefaction analysis of large datasets. Bioinformatics 33, 2594–2595 (2017).

    Google Scholar 

  32. Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 58 (PLS Methods), 109–130 (2001).

    Google Scholar 

  33. Meerdink, S. K. et al. Linking seasonal foliar traits to VSWIR-TIR spectroscopy across Cali- fornia ecosystems. Remote Sens. Environ. 186, 322–338 (2016).

    Google Scholar 

  34. Martin, M., Plourde, L., Ollinger, S., Smith, M. L. & McNeil, B. A generalizable method for remote sensing of canopy nitrogen across a wide range of forest ecosystems. Remote Sens. Environ. 112, 3511–3519 (2008).

    Google Scholar 

  35. Breiman, L. Stacked regressions. Mach. Learn. 24, 49–64 (2004).

    Google Scholar 

  36. Frost, J. Root Mean Square Error (RMSE) n.d.

  37. Wikipedia t. f. e. Coefficient of determination.

  38. Chicco, D., Warrens, M. J. & Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 7, e623 (2021). (Epub 2021 Jul 5).

    Google Scholar 

  39. Zhu, F., Zhang, H., Shao, Y., He, Y. & Ngadi, M. Mapping of fat and moisture distribution in Atlantic salmon using Near-Infrared hyperspectral imaging. Food Bioprocess Technol. 7, 1208–1214 (2014).

    Google Scholar 

  40. Digital Signal Processing: Mathematical and Computational Methods, Software Development and Applications Second Edition. A volume in Woodhead Publishing Series in Electronic and Optical Materials Woodhead Publishing, (2006).

  41. Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd (Routledge, 1988).

  42. Buda, A. & Jarynowski, A. Life-time of Correlations and its Applications 5–21 (Wydawnictwo Niezalezne, Dec. 2010).

  43. Sevik, H., Karakas, H. & Karaca, U. Color–Chlorophyll relationship of some indoor Or- Namental plants. Int. J. Eng. Sci. & Res. Technol. 2, 1706–1712 (2013).

  44. Gupta, A., Stead, T. S. & Ganti, L. Determining a Meaningful R-squared Value in Clinical Medicine. Academic Medicine & Surgery. (2024). in press

  45. Lin, Y. & Wiegand, K. Low R2 in ecology: Bitter, or B-side? Ecol. Ind. 153, 110406 (2023).

    Google Scholar 

  46. Giovannoni, S. J. & Stingl, U. Molecular diversity and ecology of microbial plankton. Nature 437, 343–348 (2005).

    Google Scholar 

  47. Jankiewicz, L. S., Dyki, B., Machla ńska, A. & Dubert, F. Oak leaf galls: neuroterus numismalis and cynips quercusfolii, their structure and ultrastructure. Acta Soc. Bot. Pol. 86, 1-13 (2017).

  48. Costa, F. R. C., Lang, C., Almeida, D. R. A., Castilho, C. V. & Poorter, L. Near-infrared spectrometry allows fast and extensive predictions of functional traits from dry leaves and branches. Ecol. Appl. 28, 1157–1167 (2018). July.

    Google Scholar 

  49. Kanning, M., Kϋhling, I., Trautz, D. & Jarmer, T. High-Resolution UAV-Based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction. Remote Sens. 10, 2000 (2018).

    Google Scholar 

  50. Jarvis, P. G., James, G. G. & Landsberg, J. J. in In Vegetation and Atmosphere, Volume 2: Case Studies. 171–240 (eds Monteith, J. L.) (Academic, 1976).

  51. Croft, H. et al. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Change Biol. 23, 3513–3524 (2017).

    Google Scholar 

  52. Meir, P. et al. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant. Cell. Environ. 25, 343–357 (2002). Published March 2002.

    Google Scholar 

  53. Anten, N. P. R., Schieving, F. & Werger, M. J. A. Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono- and dicotyledonous species. Oecologia 101, 504–513 (1995).

    Google Scholar 

  54. Ferreyra, M. L. F., Serra, P. & Casati, P. Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. Physiol. Plant. 173, 736–749 (2021).

    Google Scholar 

  55. Hughes, N. M. & Smith, W. K. Attenuation of incident light in *Galax urceolata* (Diapensiaceae): concerted influence of adaxial and abaxial anthocyanic layers on photoprotection. Am. J. Bot. 94, 784 790 (2007).

    Google Scholar 

  56. Curran, P. J. Remote sensing of foliar chemistry. Remote Sens. Environ. 30, 271 278 (1989).

    Google Scholar 

  57. Slaton, M. R., Hunt, R., Smith, W. K. & E. J. & Estimating near-infrared leaf reflectance from leaf structural characteristics. Am. J. Bot. 88, 278 284 (2001).

    Google Scholar 

  58. Chaudhry, V. et al. Shaping the leaf microbiota: plant microbe microbe interactions. J. Exp. Bot. 72 (56), 36 (2020).

    Google Scholar 

  59. O’Rourke, J. et al. Phytochrome-mediated shade avoidance responses impact the structure and composition of the bacterial phyllosphere Microbiome of Arabidopsis. Environ. Microbiome. 20, 20 (2025).

    Google Scholar 

  60. Asghar, M. A. et al. Shade and microbes enhance drought stress tolerance in plants by inducing phytohormones at molecular levels: a review. J. Plant. Ecol. 15, 11071117 (2022).

    Google Scholar 

  61. Jousset, A. et al. Where less May be more: how the rare biosphere pulls ecosystem strings. ISME J. 11, 853 862 (2017).

    Google Scholar 

  62. Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl. Acad. Sci. U.S.A. 96, 1463 1468 (1999).

    Google Scholar 

  63. Shade, A. et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 5, e0137114 (2014).

    Google Scholar 

  64. Rousk, J., Brookes, P. C. & Bååth, E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Microbiol. 75, 1589 1596 (2009).

    Google Scholar 

  65. Peter, H. et al. Function-specific response to depletion of microbial diversity. ISME J. 5, 351 361 (2011).

    Google Scholar 

  66. Fetzer, I., Matzner, E., Nägele, K., Scheu, M. & Eisenhauer, S. The extent of functional redundancy changes as species’ roles shift in different environments. Proc. Natl. Acad. Sci. U.S.A. 112, 14888 14893 (2015).

    Google Scholar 

  67. Beattie, G. A. & Lindow, S. E. The secret life of foliar bacterial pathogens on leaves. Annu. Rev. Phytopathol. 33, 145172 (1995).

    Google Scholar 

  68. Jacobs, J. L. & Sundin, G. W. Effect of solar UV-B radiation on a phyllosphere bacterial community. Appl. Environ. Microbiol. 67, 5488 5496 (2001).

    Google Scholar 

  69. Smets, W. et al. Leaf side determines the relative importance of dispersal versus host filtering in the phyllosphere microbiome. bioRxiv. Preprint, not peer-reviewed, 08.16.504148 (2022). (2022).

  70. Davey, H. M. & Winson, M. K. Using flow cytometry to quantify microbial heterogeneity. Curr. Issues. Mol. Biol. 5, 9–15 (2003).

    Google Scholar 

  71. Davidson, C. J. & Surette, M. G. Individuality in bacteria. Annu. Rev. Genet. 42, 253–268 (2008).

    Google Scholar 

  72. Joyner, D. C. & Lindow, S. E. Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146, 2435–2445 (2000).

    Google Scholar 

  73. Axtell, C. A. & Beattie, G. A. Construction and characterization of a proU–gfp transcriptional fusion that measures water availability in a microbial habitat. Appl. Environ. Microbiol. 68, 4604–4612 (2002).

    Google Scholar 

  74. Gunasekera, T. S. & Sundin, G. W. Role of nucleotide excision repair and photoreactivation in the solar UVB radiation survival of Pseudomonas syringae pv. syringae B728a. J. Appl. Microbiol. 100, 1073–1083 (2006).

    Google Scholar 

  75. Sandhu, A., Halverson, L. J. & Beattie, G. A. Bacterial degradation of airborne phenol in the phyllosphere. Environ. Microbiol. 9, 383–392 (2007).

    Google Scholar 

  76. Krapp, A. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr. Opin. Plant. Biol. 25, 115–122 (2015). Epub 2015 Jun 1.

    Google Scholar 

  77. Ma, Y. et al. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control. 106, 106712 (2019).

    Google Scholar 

  78. Cisowska, A., Wojnicz, D. & Hendrich, A. B. Anthocyanins as antimicrobial agents of natural plant origin. Nat. Prod. Commun. 6, 149–156 (2011).

    Google Scholar 

  79. Pholchan, M. K., Baptista, C., Davenport, J., Sloan, R. J. & Curtis, T. P. W. T. Microbial community assembly, theory and rare functions. Front. Microbiol. 4, 68 . (2013). (eCollection 2013).

    Google Scholar 

  80. Lynch, M. D. J. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).

    Google Scholar 

  81. Shiklomanov, A. N., Dietze, M. C., Viskari, T., Townsend, P. A. & Serbin, S. P. Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a bayesian approach to RTM inversion. Remote Sens. Environ. 183, 226–238 (2016).

    Google Scholar 

  82. Colombo, R. et al. Estimation of leaf and canopy water content in Poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sens. Environ. 112, 1820–1834 (2008).

    Google Scholar 

  83. Farmonov, N. et al. Optimizing hybrid models for forest leaf and canopy trait mapping from enmap hyperspectral data with limited field samples. Sci. Remote Sens. 12, 100253 (2025).

    Google Scholar 

  84. Wang, K. et al. Modeling global soil carbon and soil microbial carbon by integrating microbial processes into the ecosystem process model TRIPLEX-GHG. J. Adv. Model. Earth Syst. 9, 2368–2384 (2017).

    Google Scholar 

  85. Insam, H. & Wett, B. Control of GHG emission at the microbial community level. Waste Manage. 28, 699–706 (2008).

    Google Scholar 

  86. Zhu, B., Chen, Z., Hu, H., Andrei, A. S. & Li, Y. Greenhouse gas emissions and mitigation: microbes, mechanisms and modeling. Front. Microbiol. 15, 1363814 (2024).

    Google Scholar 

  87. Remus-Emsermann, M. N. P. et al. Spatial distribution analyses of natural phyllosphere- colonizing bacteria on Arabidopsis Thaliana revealed by fluorescence in situ hybridization. Environ. Microbiol. 16, 2329–2340 (2014).

    Google Scholar 

Download references

Acknowledgements

We thank Anke Becker for valuable input and productive discussions on the design of the field campaigns. We are grateful to Fiona Ullmann, Ramona Zülch, Sarah Gilles, Rebecca Dannoritzer, Merle Munoz Andres, Dominik Greif, Marco Göttig, and Nils Jansen for their support in processing leaves in the field and lab. We also thank Anjaharinony Andry Ny Aina Rakotomalala, Tobias Müller, Stefan Pinkert, and Nina Farwig as well as Christian Lampei and Mona Schreiber for their contributions to campaign design, planning, and execution, including valuable climbing support. Special thanks to Andreas Kautz for logistical support in the forest, Esther Meißner for help with field and lab work, Xiangbo Yin for assistance with fieldwork preparations, and Stella Drechsel and Olga Schechtel for conducting the C/N analyses of leaf samples. L.O. acknowledges co-funding for the position of Susanne Walden by Deutsche Forschungsgemeinschaft (DFG, GermanResearch Foundation) RU 5571, 507084794, OP 219/20-1.

Funding

Open Access funding enabled and organized by Projekt DEAL. This work was funded by the LOEWE research initiative of the State of Hesse, Germany, through the Ministry of Science and Arts (HMWK), as part of the LOEWE research cluster Tree-M (LOEWE/2/ 15/519/03/08.001(0002)/88).

Author information

Authors and Affiliations

Authors

Contributions

F.K. and J.B. wrote the manuscript with input from all authors. S.A. designed the hyperspectral scanning frame, and F.K. developed the hyperspectral data analysis pipeline. A.W. performed the bacterial data analysis. S.W. and E.M. conducted the Dualex-based leaf trait measurements. S.D. carried out the C/N analyses of leaf samples. S.W., E.M., F.K., A.W., and L.S. conducted the field campaigns and sample collection. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to
Fanhao Kong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Kong, F., Wagner, A.R., Walden, S. et al. Hyperspectral proximal sensing shows clear relation between Spatial pattern of leaf traits and bacterial alpha diversity.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-33183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-33183-4


Source: Ecology - nature.com

Predators can facilitate herbivory in nutrient-limited marine ecosystems

Species diversity advances autumn senescence via enhanced belowground carbon allocation in semi-arid grasslands

Back to Top