in

Identifying conservation priorities in global Biodiversity Hotspots to protect small-ranged vertebrates from agricultural pressure


Abstract

Biodiversity Hotspots (Hotspots), harboring exceptionally rich small-ranged species, are critical for mitigating biodiversity loss. As priorities for terrestrial conservation, Hotspots increasingly face threats from agriculture, the largest anthropogenic disturbance impacting biodiversity. Yet, the spatial dynamics of agricultural expansion and its impacts on biodiversity, especially small-ranged vertebrates, remain poorly understood. Using site-level observations and satellite imagery, we found that agricultural pressures reduce species richness by 25.8%, total abundance by 12.4%, and rarefied species richness by 8.7% relative to primary vegetation within Hotspots. However, cropland area within Hotspots expanded 12% from 2000–2019, exceeding the global average of 9%. Fine-scale analysis identified 3,483 risk spots (cropland expansion and high small-ranged vertebrate richness, ~1741 Mha); ~1031 Mha of these areas fall outside Protected Areas, particularly in the Atlantic Forest, Indo-Burma, Western Ghats, Sri Lanka, and Sundaland. These results underscore the urgent need for targeted conservation actions to prevent biodiversity loss from agricultural expansion.

Similar content being viewed by others

Effects of profit-driven cropland expansion and conservation policies

Choosing fit-for-purpose biodiversity impact indicators for agriculture in the Brazilian Cerrado ecoregion

Food impacts on species extinction risks can vary by three orders of magnitude

Data availability

All underlying raw model data are publicly available online. Potapov et al’s cropland data are available at https://glad.umd.edu/dataset/croplands; the species richness data can be obtained from https://biodiversitymapping.org/index.php/download; the PREDICTS database can be obtained from https://data.nhm.ac.uk/dataset/the-2016-release-of-the-predicts-database-v1-1 and https://data.nhm.ac.uk/dataset/release-of-data-added-to-the-predicts-database-november-2022; Biodiversity Hotspots’ shapefile is available at https://zenodo.org/records/3261807. Other ancillary datasets are available at https://zenodo.org/records/17790423.

Code availability

All scripts for the data analyses and visualization are available upon request by contacting the corresponding authors.

References

  1. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Google Scholar 

  2. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Google Scholar 

  3. Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

    Google Scholar 

  4. Pereira, H. M. et al. Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050. Science 384, 458–465 (2024).

    Google Scholar 

  5. Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).

    Google Scholar 

  6. Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    Google Scholar 

  7. Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    Google Scholar 

  8. Nielsen, K. S. et al. Biodiversity conservation as a promising frontier for behavioural science. Nat. Hum. Behav. 5, 550–556 (2021).

    Google Scholar 

  9. Blicharska, M. et al. Biodiversity’s contributions to sustainable development. Nat. Sustain. 2, 1083–1093 (2019).

    Google Scholar 

  10. Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science https://doi.org/10.1126/science.abc3189 (2020).

  11. Nicholson, E. et al. Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework. Nat. Ecol. Evol. 5, 1338–1349 (2021).

    Google Scholar 

  12. Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).

    Google Scholar 

  13. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Google Scholar 

  14. Watson, J. E. M. et al. Protect the last of the wild. Nature 563, 27–30 (2018).

    Google Scholar 

  15. Luby, I. H., Miller, S. J. & Polasky, S. When and where to protect forests. Nature 609, 89–93 (2022).

    Google Scholar 

  16. Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    Google Scholar 

  17. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Google Scholar 

  18. Pimm, S. L. & Raven, P. Extinction by numbers. Nature 403, 843–845 (2000).

    Google Scholar 

  19. Pimm, S. L. & Raven, P. H. Norman Myers (1934–2019. Nat. Ecol. Evol. 4, 177–178 (2020).

    Google Scholar 

  20. Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

    Google Scholar 

  21. Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    Google Scholar 

  22. Joppa, L. N., Roberts, D. L., Myers, N. & Pimm, S. L. Biodiversity hotspots house most undiscovered plant species. Proc. Natl Acad. Sci. USA 108, 13171–13176 (2011).

    Google Scholar 

  23. Scheffers, B. R., Joppa, L. N., Pimm, S. L. & Laurance, W. F. What we know and don’t know about Earth’s missing biodiversity. Trends Ecol. Evol. 27, 501–510 (2012).

    Google Scholar 

  24. Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).

    Google Scholar 

  25. Bateman, I. & Balmford, A. Current conservation policies risk accelerating biodiversity loss. Nature 618, 671–674 (2023).

    Google Scholar 

  26. Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).

    Google Scholar 

  27. Usubiaga-Liaño, A., Mace, G. M. & Ekins, P. Limits to agricultural land for retaining acceptable levels of local biodiversity. Nat. Sustain. 2, 491–498 (2019).

    Google Scholar 

  28. Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

    Google Scholar 

  29. Crist, E., Mora, C. & Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 356, 260–264 (2017).

    Google Scholar 

  30. Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).

    Google Scholar 

  31. Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).

    Google Scholar 

  32. Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 2844 (2019).

    Google Scholar 

  33. Molotoks, A. et al. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Change Biol. 24, 5895–5908 (2018).

    Google Scholar 

  34. Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).

    Google Scholar 

  35. Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Google Scholar 

  36. Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).

    Google Scholar 

  37. Brodie, J. F. et al. Landscape-scale benefits of protected areas for tropical biodiversity. Nature 620, 807–812 (2023).

    Google Scholar 

  38. De Marco, P. et al. The value of private properties for the conservation of biodiversity in the Brazilian Cerrado. Science 380, 298–301 (2023).

    Google Scholar 

  39. Allan, J. R. et al. The minimum land area requiring conservation attention to safeguard biodiversity. Science 376, 1094–1101 (2022).

  40. Farhadinia, M. S. et al. Current trends suggest most Asian countries are unlikely to meet future biodiversity targets on protected areas. Commun. Biol. 5, 1221 (2022).

    Google Scholar 

  41. Yang, R. et al. Cost-effective priorities for the expansion of global terrestrial protected areas: Setting post-2020 global and national targets. Sci. Adv. 6, eabc3436 (2020).

  42. Xu, H. et al. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 5, 411–418 (2021).

    Google Scholar 

  43. Murali, G., Gumbs, R., Meiri, S. & Roll, U. Global determinants and conservation of evolutionary and geographic rarity in land vertebrates. Sci. Adv. 7, eabe5582 (2021).

  44. Hudson, L. N. et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 4, 4701–4735 (2014).

    Google Scholar 

  45. Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 2902 (2021).

    Google Scholar 

  46. Filgueiras, B. K. C., Peres, C. A., Melo, F. P. L., Leal, I. R. & Tabarelli, M. Winner–loser species replacements in human-modified landscapes. Trends Ecol. Evol. 36, 545–555 (2021).

    Google Scholar 

  47. Auliz-Ortiz, D. M. et al. Underlying and proximate drivers of biodiversity changes in Mesoamerican biosphere reserves. Proc. Natl Acad. Sci. USA 121, e2305944121 (2024).

  48. Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).

    Google Scholar 

  49. Sala, O. E. et al. Global Biodiversity Scenarios for the Year 2100. Science 287, 1770–1774 (2000).

    Google Scholar 

  50. Alroy, J. Effects of habitat disturbance on tropical forest biodiversity. Proc. Natl Acad. Sci. USA 114, 6056–6061 (2017).

    Google Scholar 

  51. Silva Junior, C. H. L. et al. Northeast Brazil’s imperiled Cerrado. Science 372, 139–140 (2021).

    Google Scholar 

  52. He, X. et al. Accelerating global mountain forest loss threatens biodiversity hotspots. One Earth 6, 303–315 (2023).

    Google Scholar 

  53. Searchinger, T. D. et al. High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland. Nat. Clim. Change 5, 481–486 (2015).

    Google Scholar 

  54. Hu, X., Huang, B., Verones, F., Cavalett, O. & Cherubini, F. Overview of recent land-cover changes in biodiversity hotspots. Front. Ecol. Environ. 19, 91–97 (2021).

    Google Scholar 

  55. Kong, X., Zhou, Z. & Jiao, L. Hotspots of land-use change in global biodiversity hotspots. Resour. Conserv. Recycl. 174, 105770 (2021).

    Google Scholar 

  56. Chai, L. et al. Telecoupled impacts of the Russia–Ukraine war on global cropland expansion and biodiversity. Nat. Sustain. https://doi.org/10.1038/s41893-024-01292-z (2024).

  57. Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).

    Google Scholar 

  58. Raven, P. H. et al. The distribution of biodiversity richness in the tropics. Sci. Adv. 6, eabc6228 (2020).

  59. Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2020).

    Google Scholar 

  60. Bruner, A. G., Gullison, R. E., Rice, R. E. & Da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).

    Google Scholar 

  61. de Lima, R. A. F. et al. The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nat. Commun. 11, 6347 (2020).

    Google Scholar 

  62. Wolf, C., Levi, T., Ripple, W. J., Zárrate-Charry, D. A. & Betts, M. G. A forest loss report card for the world’s protected areas. Nat. Ecol. Evol. 5, 520–529 (2021).

    Google Scholar 

  63. Crooks, K. R. et al. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl Acad. Sci. USA 114, 7635–7640 (2017).

    Google Scholar 

  64. Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    Google Scholar 

  65. Perez-Quezada, J. F. & Scherson, R. Protect central Chile’s biodiversity. Science 382, 165–165 (2023).

    Google Scholar 

  66. Ralimanana, H. et al. Madagascar’s extraordinary biodiversity: threats and opportunities. Science https://doi.org/10.1126/science.adf1466 (2022).

  67. Chen, X. & Hull, V. Border conservation in Hindu Kush-Himalaya. Science 380, 1330–1332 (2023).

    Google Scholar 

  68. Meng, Z. et al. Post-2020 biodiversity framework challenged by cropland expansion in protected areas. Nat. Sustain. 1–11 https://doi.org/10.1038/s41893-023-01093-w (2023).

  69. Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    Google Scholar 

  70. Arneth, A. et al. Making protected areas effective for biodiversity, climate and food. Glob. Change Biol. 29, 3883–3894 (2023).

    Google Scholar 

  71. Appleton, M. R. et al. Protected area personnel and ranger numbers are insufficient to deliver global expectations. Nat. Sustain. 5, 1100–1110 (2022).

    Google Scholar 

  72. Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    Google Scholar 

  73. Pimm, S. We can have biodiversity and eat too. Nat. Food 3, 310–311 (2022).

    Google Scholar 

  74. Henry, R. C. et al. Global and regional health and food security under strict conservation scenarios. Nat. Sustain. 5, 303–310 (2022).

    Google Scholar 

  75. Albert, J. S. et al. Human impacts outpace natural processes in the Amazon. Science 379, eabo5003 (2023).

  76. Chung, M. G. & Liu, J. International food trade benefits biodiversity and food security in low-income countries. Nat. Food 3, 349–355 (2022).

    Google Scholar 

  77. Chowdhury, S. et al. Protected areas and the future of insect conservation. Trends Ecol. Evol. 38, 85–95 (2023).

    Google Scholar 

  78. Noori, S. et al. Extensive mismatch between protected areas and biodiversity hotspots of Iranian Lepidoptera. Insect Conserv. Divers. 17, 938–952 (2024).

    Google Scholar 

  79. Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).

    Google Scholar 

  80. Birch, C. P. D., Oom, S. P. & Beecham, J. A. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 206, 347–359 (2007).

    Google Scholar 

  81. Li, G. et al. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nat. Commun. 13, 1628 (2022).

    Google Scholar 

  82. Mi, C. et al. Global Protected Areas as refuges for amphibians and reptiles under climate change. Nat. Commun. 14, 1389 (2023).

    Google Scholar 

  83. Jenkins, C. N., Van Houtan, K. S., Pimm, S. L. & Sexton, J. O. US protected lands mismatch biodiversity priorities. Proc. Natl Acad. Sci. USA 112, 5081–5086 (2015).

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Key Research and Development Program of China (2022YFF0802400). X. Xiao was supported by the research grants from the U.S. National Science Foundation (1911955, 2200310).

Author information

Authors and Affiliations

Authors

Contributions

J.D. and C.Y. conceptualized the study; C.Y. performed research, analyzed data, made the visualizations, and wrote the initial draft; C.Y., J.D., C.J., G.Z., X.Z., Y.L., Z.M., K.M., L.Z., R.G., E.E., and X.X. edited the paper.

Corresponding authors

Correspondence to
Jinwei Dong or Geli Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth & Environment thanks Sajad Noori, Jing Gan and the other anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Edmond Totin, Martina Grecequet, and Mengjie Wang. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Yang, C., Dong, J., Jenkins, C.N. et al. Identifying conservation priorities in global Biodiversity Hotspots to protect small-ranged vertebrates from agricultural pressure.
Commun Earth Environ (2025). https://doi.org/10.1038/s43247-025-03099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43247-025-03099-y


Source: Ecology - nature.com

Seasonal rainfall and land-use impacts on microplastic characteristics in an endangered salmon stream

Spatial distributions, driving factors, and future changes of soil organic carbon in China: arid regions vs. humid regions

Back to Top