Abstract
Opuntia ficus-indica (L.), a cactus, a critical crop in Morocco, has been severely damaged by Dactylopius opuntiae since its introduction in 2014. This study evaluated the insecticidal and preventive effects of kaolin clay against D. opuntiae females and nymphs under laboratory and field conditions and assessed its impact on the physiological parameters of health and wettability of cactus cladodes. Laboratory cage experiments revealed that Kaolin-treated cladodes (30 g/L) had significantly fewer colonies (3.67) than water-treated controls (7.33) after 42 days, with stable evolution up to 60 days. Choice tests showed more nymphs on untreated cladodes (7) than on treated ones (3) after one day. No-choice tests revealed significantly higher nymph mortality on kaolin-treated cladodes (75 dead nymphs) compared to controls (21) by day 44. Field trials supported these findings, with treated cladodes showing only 16 colonies after 40 days compared to 35 on untreated ones. Kaolin also induced direct insecticidal activity, causing 62% and 74% nymph mortality three days after application at 30 g/L and 60 g/L, respectively. Female mortality reached 32% after five days at the double dose. In addition, Kaolin preserved greener cladodes with darker tissues, and higher chlorophyll levels, while infested cladodes showed chlorophyll loss and lighter color. Kaolin also transformed cladode surfaces from hydrophobic (contact angle: 111.11°) to hydrophilic (contact angle: 67°) after one day, with a decrease to 57° after 21 days. These results highlight the potential of Kaolin as a preventive control without affecting cactus quality.
Similar content being viewed by others
Moroccan entomopathogenic nematodes as potential biocontrol agents against Dactylopius opuntiae (Hemiptera: Dactylopiidae)
Isolation, identification and pathogenicity of local entomopathogenic bacteria as biological control agents against the wild cochineal Dactylopius opuntiae (Cockerell) on cactus pear in Morocco
Nigella sativa callus treated with sodium azide exhibit augmented antioxidant activity and DNA damage inhibition
Data availability
The data is available on request from the corresponding author, Chaimae Ramdani (CR).
References
Bouzroud, S. et al. Micropropagation of opuntia and other cacti species through axillary shoot proliferation: A comprehensive review. Front. Plant Sci. 13, 926653 (2022).
Hussain, F. & Durrani, M. J. Seasonal Availability, Palatability and Animal Preferences of Forage Plants in Harboi arid Range Land (Kalat, Pakistan, 2009).
Belay, T., Gebreselassie, M. & Abadi, T. Description of Cactus Pear (Opuntia ficus-indica) (2002).
Felker, P. & Inglese, P. Short-term and long-term research needs for Opuntia ficus-indica (L.) mill. utilization in arid areas. J. Profess. Assoc. Cactus Dev. 5, 131–152 (2003).
Sipango, N. et al. Prickly pear (Opuntia spp.) as an invasive species and a potential fodder resource for ruminant animals. Sustainability 14, 3719 (2022).
MAPMDREF. MAPMDREF. https://www.agriculture.gov.ma/fr/actualites/cochenille-du-cactus-lancement-dune-assistance-technique-de-la-fao-pour-leradication-du (2017).
Shetty, A. A., Rana, M. K. & Preetham, S. P. Cactus: A medicinal food. J. Food Sci. Technol. 49, 530–536 (2012).
Ramdani, C., Bouharroud, R., Sbaghi, M., Mesfioui, A. & El Bouhssini, M. Field and laboratory evaluations of different botanical insecticides for the control of Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Int. J. Trop. Insect. Sci. 41, 1623–1632 (2021).
Bouharroud, R., Sbaghi, M., Boujghagh, M. & El Bouhssini, M. Biological control of the prickly pear cochineal Dactylopius opuntiae Cockerell (Hemiptera: Dactylopiidae). EPPO Bull. 48, 300–306 (2018).
El Aalaoui, M. et al. Comparative toxicity of different chemical and biological insecticides against the scale insect Dactylopius opuntiae and their side effects on the predator Cryptolaemus montrouzieri. Arch. Phytopathol. Plant Protect. 52, 155–169 (2019).
El Fakhouri, K. et al. Isolation, identification and pathogenicity of local entomopathogenic bacteria as biological control agents against the wild cochineal Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Sci. Rep. 13, 21647 (2023).
Ramdani, C. et al. Chemical composition and insecticidal potential of six essential oils from morocco against Dactylopius opuntiae (Cockerell) under Field and Laboratory Conditions. Insects 12, 1007 (2021).
Ramdani, C. et al. Entomopathogenic fungi as biological control agents of Dactylopius opuntiae (Hemiptera: Dactylopiidae) under laboratory and greenhouse conditions. Front. Sustain. Food Syst. 6, 997254 (2022).
Sbaghi, M., Bouharroud, R., Boujghagh, M. & Bouhssini, M. E. Sources de résistance d’Opuntia spp. contre la cochenille à carmin, Dactylopius opuntiae, au Maroc. EPPO Bull. 49, 585–592 (2019).
Tulloch, A. P. The composition of beeswax and other waxes secreted by insects. Lipids 5, 247–258 (1970).
Vanegas-Rico, J. M., Lomeli-Flores, J. R., Rodríguez-Leyva, E., Mora-Aguilera, G. & Valdez, J. M. Enemigos naturales de Dactylopius opuntiae (Cockerell) en Opuntia ficus-indica (L.) Miller en el centro de México. AZM 26, 415–433 (2010).
Born, K., Fink, A. H. & Paeth, H. Dry and wet periods in the northwestern Maghreb for present day and future climate conditions. Metz 17, 533–551 (2008).
Knippertz, P., Christoph, M. & Speth, P. Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorol. Atmos. Phys. 83, 67–88 (2003).
Glenn, D. M. & Puterka, G. J. Particle films: A new technology for agriculture. Horticult. Rev. 31, 1–44. https://doi.org/10.1002/9780470650882.ch1 (2004).
Ouguas, Y. Mouche de l’olivier: Bactrocera oleae Gmelin. Rabat: Institut National de la Recherche Agronomique (INRA-DIC), Division de l’Information et de la Communication. Dépôt légal: 2021MO5330 (2021).
Glenn, D. M., Puterka, G. J., vanderZwet, T., Byers, R. E. & Feldhake, C. Hydrophobic particle films: A new paradigm for suppression of arthropod pests and plant diseases. J. Econ. Entomol. 92, 759–771 (1999).
Unruh, T. R., Knight, A. L., Upton, J., Glenn, D. M. & Puterka, G. J. Particle films for suppression of the codling moth (Lepidoptera: Tortricidae) in apple and pear orchards. EC 93, 737–743 (2000).
Puterka, G. J., Glenn, D. M., Sekutowski, D. G., Unruh, T. R. & Jones, S. K. Progress toward liquid formulations of particle films for insect and disease control in pear. Environ. Entomol. 29, 329–339 (2000).
Daniel, C., Pfammatter, W., Kehrli, P. & Wyss, E. Processed kaolin as an alternative insecticide against the European pear sucker, Cacopsylla pyri (L.). J. Appl. Entomol. 129, 363–367 (2005).
Saour, G. Efficacy of kaolin particle film and selected synthetic insecticides against pistachio psyllid Agonoscena targionii (Homoptera: Psyllidae) infestation. Crop Prot. 24, 711–717 (2005).
Mazor, M. & Erez, A. Processed kaolin protects fruits from Mediterranean fruit fly infestations. Crop Prot. 23, 47–51 (2004).
Saour, G. & Makee, H. A kaolin-based particle film for suppression of the olive fruit fly Bactrocera oleae Gmelin (Dip., Tephritidae) in olive groves. J. Appl. Entomol. 128, 28–31 (2004).
Cottrell, T. E., Wood, B. W. & Reilly, C. C. Particle film affects black pecan aphid (Homoptera: Aphididae) on Pecan. EC 95, 782–788 (2002).
Wyss, E. & Daniel, C. Effects of autumn kaolin and pyrethrin treatments on the spring population of Dysaphis plantaginea in apple orchards. J. Appl. Entomol. 128, 147–149 (2004).
Pasqualini, E., Civolani, S. & Grappadelli, L. Particle film technology: Approach for a biorational control of Cacopsylla pyri (Rhynchota Psyllidae) in Northern Italy. Bull. Insectol. 55, 39–42 (2007).
Knight, A., Unruh, T., Christianson, B., Puterka, G. & Glenn, D. M. Effects of a Kaolin-based particle film on obliquebanded leafroller (Lepidoptera: Tortricidae). J. Econ. Entomol. 93, 744–749 (2000).
Showler, A. T. Effects of kaolin particle film on beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), oviposition, larval feeding and development on cotton, Gossypium hirsutum L. Agrc. Ecosyst. Environ. 95, 265–271 (2003).
Lapointe, S. L. Particle film deters oviposition by Diaprepes abbreviatus (Coleoptera: Curculionidae). EC 93, 1459–1463 (2000).
Showler, A. T. Effects of Kaolin-based particle film application on boll weevil (Coleoptera: Curculionidae) injury to cotton. EC 95, 754–762 (2002).
Gharaghani, A., Mohammadi Javarzari, A. & Vahdati, K. Kaolin particle film alleviates adverse effects of light and heat stresses and improves nut and kernel quality in Persian walnut. Sci. Horticult. 239, 35–40 (2018).
Terán, F., Vives-Peris, V., López-Climent, M. F., Gómez-Cadenas, A. & Pérez-Clemente, R. M. Palliative effects of kaolin on citrus plants under controlled stress conditions of high temperature and high light intensity. J. Plant Growth Regul. 43, 486–499 (2024).
Silva, S. Q. Proposta para avaliação do controle biológico da cochonilha Diaspis echinocacti (Bouché, 1833) (Homoptera, Diaspididae) da palma forrageira em Pernambuco. In Mater’s Thesis, Universidade Federal Rural de Pernambuco, Recife, Brazil (1991).
McLaren, K. CIELAB hue-angle anomalies at low tristimulus ratios. Color. Res. Appl. 5, 139–143 (1980).
Wyszecki, G., Stiles, V. S. & Kelly, K. L. Color science: Concepts and methods, quantitative data and formulas. Phys. Today 21, 83–84 (1968).
Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11, 591–592 (1983).
Nottingham, L. B., Orpet, R. J. & Beers, E. H. Integrated Pest Management Programs for Pear Psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae), Using Kaolin Clay and Reflective Plastic Mulch. J. Econ. Entomol. 115, 1607–1619 (2022).
Tacoli, F. et al. Efficacy and Mode of Action of Kaolin in the Control of Empoasca vitis and Zygina rhamni (Hemiptera: Cicadellidae) in Vineyards. J. Econ. Entomol. 110, 1164–1178 (2017).
Showler, A. T. Effect of kaolin particle film on boll weevil feeding and oviposition on cotton squares (2001).
Soubeih, K., Ali, E. & El-Hadidy, A. Effect of kaolin and diatoms on growth, productivity and pests of potato under north SINAI conditions. Egypt. J. Desert Res. 67, 83–114 (2017).
Silva, C. A. D. & Ramalho, F. S. Kaolin spraying protects cotton plants against damages by boll weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae). J. Pest. Sci. 86, 563–569 (2013).
Alavo, T. B. C. Biological control agents and environmentally-friendly compounds for the integrated management of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) on cotton: Perspectives for pyrethroid resistance management in West Africa?. Archiv. Phytopathol. Plant Protect. 39, 105–111 (2006).
Barker, J. E., Holaschke, M., Fulton, A., Evans, K. A. & Powell, G. Effects of kaolin particle film on Myzus persicae (Hemiptera: Aphididae) behaviour and performance. Bull. Entomol. Res. 97, 455–460 (2007).
Larentzaki, E., Shelton, A. M. & Plate, J. Effect of kaolin particle film on Thrips tabaci (Thysanoptera: Thripidae), oviposition, feeding and development on onions: A lab and field case study. Crop Prot. 27, 727–734 (2008).
Gerganova, M., Popova, A. V., Stanoeva, D. & Velitchkova, M. Tomato plants acclimate better to elevated temperature and high light than to treatment with each factor separately. Plant Physiol. Biochem. 104, 234–241 (2016).
Gullo, G., Dattola, A., Vonella, V. & Zappia, R. Effects of two reflective materials on gas exchange, yield, and fruit quality of sweet orange tree Citrus sinensis (L.) Osb. Eur. J. Agron. 118, 126071 (2020).
Jifon, J. L. & Syvertsen, J. P. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol. 23, 119–127 (2003).
Bernardo, S. et al. Kaolin application modulates grapevine photochemistry and defence responses in distinct mediterranean-type climate vineyards. Agronomy 11, 477 (2021).
Cirillo, A. et al. Mitigation of high-temperature damage by application of kaolin and pinolene on young olive trees (Olea europaea L.): A preliminary experiment to assess biometric, eco-physiological and nutraceutical parameters. Agronomy 11, 1884 (2021).
Roussos, P. A., Denaxa, N.-K., Damvakaris, T., Stournaras, V. & Argyrokastritis, I. Effect of alleviating products with different mode of action on physiology and yield of olive under drought. Sci. Hortic. 125, 700–711 (2010).
Nanos, P. A. M. G. D. Leaf and fruit responses to kaolin particle film applied onto mature olive trees. J. Biol. Agric. Healthc. 5, 17 (2015).
Segura-Monroy, S., Uribe-Vallejo, A., Ramirez-Godoy, A. & Restrepo-Diaz, H. Effect of kaolin application on growth, water use efficiency, and leaf epidermis characteristics of Physalis peruviana L. seedlings under two irrigation regimes. J. Agric. Sci. Technol. 17(6), 1585–1596 (2015).
Herrera-Martínez, V. et al. Effect of culture conditions on stomatal density and stomatal index in four cactus species. Haseltonia 20, 43–50 (2015).
Aleanizy, F. S., Alqahtani, F., Al Gohary, O., El Tahir, E. & Al Shalabi, R. Determination and characterization of metronidazole–kaolin interaction. Saudi Pharm. J. 23, 167–176 (2015).
Avornyo, A. K., Hasan, S. W., Banat, F. & Chrysikopoulos, C. V. Preparation, characterization, and applications of kaolin/kaolin-based composite membranes in oily wastewater treatment: Recent developments, challenges, and opportunities. J. Environ. Manage. 370, 122800 (2024).
Féat, A., Federle, W., Kamperman, M. & Van Der Gucht, J. Coatings preventing insect adhesion: An overview. Prog. Org. Coat. 134, 349–359 (2019).
Acknowledgements
The authors sincerely thank Mr. Ismail Bennani from the UM6P core lab for their electron microscopy service. We also want to thank the cactus growers in Marchouch and Berrechid regions for helping with fieldwork and UM6P for funding this research.
Author information
Authors and Affiliations
Contributions
CR, KEF, MEB conceived and designed research. CR, AT and MAS conducted experiments. KEF, NT, OM and AT analyzed data. CR, KEF, AT, and NT wrote the manuscript. MEB, NT and OM review of the article. All authors read and approved the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary Material 1
Supplementary Material 2
Supplementary Material 3
Supplementary Material 4
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Ramdani, C., El Fakhouri, K., Tika, A. et al. Kaolin particle film repellent effect against the wild cochineal Dactylopius opuntiae and its impact on cactus pear health.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-33560-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-33560-z
Keywords
- Wild cochineal
- Cactus
- Kaolin
- Preventive approach
- Surface wettability
Supplementary Material 1Supplementary Material 2Supplementary Material 3
Source: Ecology - nature.com
