in

Kaolin particle film repellent effect against the wild cochineal Dactylopius opuntiae and its impact on cactus pear health


Abstract

Opuntia ficus-indica (L.), a cactus, a critical crop in Morocco, has been severely damaged by Dactylopius opuntiae since its introduction in 2014. This study evaluated the insecticidal and preventive effects of kaolin clay against D. opuntiae females and nymphs under laboratory and field conditions and assessed its impact on the physiological parameters of health and wettability of cactus cladodes. Laboratory cage experiments revealed that Kaolin-treated cladodes (30 g/L) had significantly fewer colonies (3.67) than water-treated controls (7.33) after 42 days, with stable evolution up to 60 days. Choice tests showed more nymphs on untreated cladodes (7) than on treated ones (3) after one day. No-choice tests revealed significantly higher nymph mortality on kaolin-treated cladodes (75 dead nymphs) compared to controls (21) by day 44. Field trials supported these findings, with treated cladodes showing only 16 colonies after 40 days compared to 35 on untreated ones. Kaolin also induced direct insecticidal activity, causing 62% and 74% nymph mortality three days after application at 30 g/L and 60 g/L, respectively. Female mortality reached 32% after five days at the double dose. In addition, Kaolin preserved greener cladodes with darker tissues, and higher chlorophyll levels, while infested cladodes showed chlorophyll loss and lighter color. Kaolin also transformed cladode surfaces from hydrophobic (contact angle: 111.11°) to hydrophilic (contact angle: 67°) after one day, with a decrease to 57° after 21 days. These results highlight the potential of Kaolin as a preventive control without affecting cactus quality.

Similar content being viewed by others

Moroccan entomopathogenic nematodes as potential biocontrol agents against Dactylopius opuntiae (Hemiptera: Dactylopiidae)

Isolation, identification and pathogenicity of local entomopathogenic bacteria as biological control agents against the wild cochineal Dactylopius opuntiae (Cockerell) on cactus pear in Morocco

Nigella sativa callus treated with sodium azide exhibit augmented antioxidant activity and DNA damage inhibition

Data availability

The data is available on request from the corresponding author, Chaimae Ramdani (CR).

References

  1. Bouzroud, S. et al. Micropropagation of opuntia and other cacti species through axillary shoot proliferation: A comprehensive review. Front. Plant Sci. 13, 926653 (2022).

    Google Scholar 

  2. Hussain, F. & Durrani, M. J. Seasonal Availability, Palatability and Animal Preferences of Forage Plants in Harboi arid Range Land (Kalat, Pakistan, 2009).

  3. Belay, T., Gebreselassie, M. & Abadi, T. Description of Cactus Pear (Opuntia ficus-indica) (2002).

  4. Felker, P. & Inglese, P. Short-term and long-term research needs for Opuntia ficus-indica (L.) mill. utilization in arid areas. J. Profess. Assoc. Cactus Dev. 5, 131–152 (2003).

    Google Scholar 

  5. Sipango, N. et al. Prickly pear (Opuntia spp.) as an invasive species and a potential fodder resource for ruminant animals. Sustainability 14, 3719 (2022).

    Google Scholar 

  6. MAPMDREF. MAPMDREF. https://www.agriculture.gov.ma/fr/actualites/cochenille-du-cactus-lancement-dune-assistance-technique-de-la-fao-pour-leradication-du (2017).

  7. Shetty, A. A., Rana, M. K. & Preetham, S. P. Cactus: A medicinal food. J. Food Sci. Technol. 49, 530–536 (2012).

    Google Scholar 

  8. Ramdani, C., Bouharroud, R., Sbaghi, M., Mesfioui, A. & El Bouhssini, M. Field and laboratory evaluations of different botanical insecticides for the control of Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Int. J. Trop. Insect. Sci. 41, 1623–1632 (2021).

    Google Scholar 

  9. Bouharroud, R., Sbaghi, M., Boujghagh, M. & El Bouhssini, M. Biological control of the prickly pear cochineal Dactylopius opuntiae Cockerell (Hemiptera: Dactylopiidae). EPPO Bull. 48, 300–306 (2018).

    Google Scholar 

  10. El Aalaoui, M. et al. Comparative toxicity of different chemical and biological insecticides against the scale insect Dactylopius opuntiae and their side effects on the predator Cryptolaemus montrouzieri. Arch. Phytopathol. Plant Protect. 52, 155–169 (2019).

    Google Scholar 

  11. El Fakhouri, K. et al. Isolation, identification and pathogenicity of local entomopathogenic bacteria as biological control agents against the wild cochineal Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Sci. Rep. 13, 21647 (2023).

    Google Scholar 

  12. Ramdani, C. et al. Chemical composition and insecticidal potential of six essential oils from morocco against Dactylopius opuntiae (Cockerell) under Field and Laboratory Conditions. Insects 12, 1007 (2021).

    Google Scholar 

  13. Ramdani, C. et al. Entomopathogenic fungi as biological control agents of Dactylopius opuntiae (Hemiptera: Dactylopiidae) under laboratory and greenhouse conditions. Front. Sustain. Food Syst. 6, 997254 (2022).

    Google Scholar 

  14. Sbaghi, M., Bouharroud, R., Boujghagh, M. & Bouhssini, M. E. Sources de résistance d’Opuntia spp. contre la cochenille à carmin, Dactylopius opuntiae, au Maroc. EPPO Bull. 49, 585–592 (2019).

    Google Scholar 

  15. Tulloch, A. P. The composition of beeswax and other waxes secreted by insects. Lipids 5, 247–258 (1970).

    Google Scholar 

  16. Vanegas-Rico, J. M., Lomeli-Flores, J. R., Rodríguez-Leyva, E., Mora-Aguilera, G. & Valdez, J. M. Enemigos naturales de Dactylopius opuntiae (Cockerell) en Opuntia ficus-indica (L.) Miller en el centro de México. AZM 26, 415–433 (2010).

    Google Scholar 

  17. Born, K., Fink, A. H. & Paeth, H. Dry and wet periods in the northwestern Maghreb for present day and future climate conditions. Metz 17, 533–551 (2008).

    Google Scholar 

  18. Knippertz, P., Christoph, M. & Speth, P. Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorol. Atmos. Phys. 83, 67–88 (2003).

    Google Scholar 

  19. Glenn, D. M. & Puterka, G. J. Particle films: A new technology for agriculture. Horticult. Rev. 31, 1–44. https://doi.org/10.1002/9780470650882.ch1 (2004).

    Google Scholar 

  20. Ouguas, Y. Mouche de l’olivier: Bactrocera oleae Gmelin. Rabat: Institut National de la Recherche Agronomique (INRA-DIC), Division de l’Information et de la Communication. Dépôt légal: 2021MO5330 (2021).

  21. Glenn, D. M., Puterka, G. J., vanderZwet, T., Byers, R. E. & Feldhake, C. Hydrophobic particle films: A new paradigm for suppression of arthropod pests and plant diseases. J. Econ. Entomol. 92, 759–771 (1999).

    Google Scholar 

  22. Unruh, T. R., Knight, A. L., Upton, J., Glenn, D. M. & Puterka, G. J. Particle films for suppression of the codling moth (Lepidoptera: Tortricidae) in apple and pear orchards. EC 93, 737–743 (2000).

    Google Scholar 

  23. Puterka, G. J., Glenn, D. M., Sekutowski, D. G., Unruh, T. R. & Jones, S. K. Progress toward liquid formulations of particle films for insect and disease control in pear. Environ. Entomol. 29, 329–339 (2000).

    Google Scholar 

  24. Daniel, C., Pfammatter, W., Kehrli, P. & Wyss, E. Processed kaolin as an alternative insecticide against the European pear sucker, Cacopsylla pyri (L.). J. Appl. Entomol. 129, 363–367 (2005).

    Google Scholar 

  25. Saour, G. Efficacy of kaolin particle film and selected synthetic insecticides against pistachio psyllid Agonoscena targionii (Homoptera: Psyllidae) infestation. Crop Prot. 24, 711–717 (2005).

    Google Scholar 

  26. Mazor, M. & Erez, A. Processed kaolin protects fruits from Mediterranean fruit fly infestations. Crop Prot. 23, 47–51 (2004).

    Google Scholar 

  27. Saour, G. & Makee, H. A kaolin-based particle film for suppression of the olive fruit fly Bactrocera oleae Gmelin (Dip., Tephritidae) in olive groves. J. Appl. Entomol. 128, 28–31 (2004).

    Google Scholar 

  28. Cottrell, T. E., Wood, B. W. & Reilly, C. C. Particle film affects black pecan aphid (Homoptera: Aphididae) on Pecan. EC 95, 782–788 (2002).

    Google Scholar 

  29. Wyss, E. & Daniel, C. Effects of autumn kaolin and pyrethrin treatments on the spring population of Dysaphis plantaginea in apple orchards. J. Appl. Entomol. 128, 147–149 (2004).

    Google Scholar 

  30. Pasqualini, E., Civolani, S. & Grappadelli, L. Particle film technology: Approach for a biorational control of Cacopsylla pyri (Rhynchota Psyllidae) in Northern Italy. Bull. Insectol. 55, 39–42 (2007).

    Google Scholar 

  31. Knight, A., Unruh, T., Christianson, B., Puterka, G. & Glenn, D. M. Effects of a Kaolin-based particle film on obliquebanded leafroller (Lepidoptera: Tortricidae). J. Econ. Entomol. 93, 744–749 (2000).

    Google Scholar 

  32. Showler, A. T. Effects of kaolin particle film on beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), oviposition, larval feeding and development on cotton, Gossypium hirsutum L. Agrc. Ecosyst. Environ. 95, 265–271 (2003).

    Google Scholar 

  33. Lapointe, S. L. Particle film deters oviposition by Diaprepes abbreviatus (Coleoptera: Curculionidae). EC 93, 1459–1463 (2000).

    Google Scholar 

  34. Showler, A. T. Effects of Kaolin-based particle film application on boll weevil (Coleoptera: Curculionidae) injury to cotton. EC 95, 754–762 (2002).

    Google Scholar 

  35. Gharaghani, A., Mohammadi Javarzari, A. & Vahdati, K. Kaolin particle film alleviates adverse effects of light and heat stresses and improves nut and kernel quality in Persian walnut. Sci. Horticult. 239, 35–40 (2018).

    Google Scholar 

  36. Terán, F., Vives-Peris, V., López-Climent, M. F., Gómez-Cadenas, A. & Pérez-Clemente, R. M. Palliative effects of kaolin on citrus plants under controlled stress conditions of high temperature and high light intensity. J. Plant Growth Regul. 43, 486–499 (2024).

    Google Scholar 

  37. Silva, S. Q. Proposta para avaliação do controle biológico da cochonilha Diaspis echinocacti (Bouché, 1833) (Homoptera, Diaspididae) da palma forrageira em Pernambuco. In Mater’s Thesis, Universidade Federal Rural de Pernambuco, Recife, Brazil (1991).

  38. McLaren, K. CIELAB hue-angle anomalies at low tristimulus ratios. Color. Res. Appl. 5, 139–143 (1980).

    Google Scholar 

  39. Wyszecki, G., Stiles, V. S. & Kelly, K. L. Color science: Concepts and methods, quantitative data and formulas. Phys. Today 21, 83–84 (1968).

    Google Scholar 

  40. Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11, 591–592 (1983).

    Google Scholar 

  41. Nottingham, L. B., Orpet, R. J. & Beers, E. H. Integrated Pest Management Programs for Pear Psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae), Using Kaolin Clay and Reflective Plastic Mulch. J. Econ. Entomol. 115, 1607–1619 (2022).

    Google Scholar 

  42. Tacoli, F. et al. Efficacy and Mode of Action of Kaolin in the Control of Empoasca vitis and Zygina rhamni (Hemiptera: Cicadellidae) in Vineyards. J. Econ. Entomol. 110, 1164–1178 (2017).

    Google Scholar 

  43. Showler, A. T. Effect of kaolin particle film on boll weevil feeding and oviposition on cotton squares (2001).

  44. Soubeih, K., Ali, E. & El-Hadidy, A. Effect of kaolin and diatoms on growth, productivity and pests of potato under north SINAI conditions. Egypt. J. Desert Res. 67, 83–114 (2017).

    Google Scholar 

  45. Silva, C. A. D. & Ramalho, F. S. Kaolin spraying protects cotton plants against damages by boll weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae). J. Pest. Sci. 86, 563–569 (2013).

    Google Scholar 

  46. Alavo, T. B. C. Biological control agents and environmentally-friendly compounds for the integrated management of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) on cotton: Perspectives for pyrethroid resistance management in West Africa?. Archiv. Phytopathol. Plant Protect. 39, 105–111 (2006).

    Google Scholar 

  47. Barker, J. E., Holaschke, M., Fulton, A., Evans, K. A. & Powell, G. Effects of kaolin particle film on Myzus persicae (Hemiptera: Aphididae) behaviour and performance. Bull. Entomol. Res. 97, 455–460 (2007).

    Google Scholar 

  48. Larentzaki, E., Shelton, A. M. & Plate, J. Effect of kaolin particle film on Thrips tabaci (Thysanoptera: Thripidae), oviposition, feeding and development on onions: A lab and field case study. Crop Prot. 27, 727–734 (2008).

    Google Scholar 

  49. Gerganova, M., Popova, A. V., Stanoeva, D. & Velitchkova, M. Tomato plants acclimate better to elevated temperature and high light than to treatment with each factor separately. Plant Physiol. Biochem. 104, 234–241 (2016).

    Google Scholar 

  50. Gullo, G., Dattola, A., Vonella, V. & Zappia, R. Effects of two reflective materials on gas exchange, yield, and fruit quality of sweet orange tree Citrus sinensis (L.) Osb. Eur. J. Agron. 118, 126071 (2020).

    Google Scholar 

  51. Jifon, J. L. & Syvertsen, J. P. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol. 23, 119–127 (2003).

    Google Scholar 

  52. Bernardo, S. et al. Kaolin application modulates grapevine photochemistry and defence responses in distinct mediterranean-type climate vineyards. Agronomy 11, 477 (2021).

    Google Scholar 

  53. Cirillo, A. et al. Mitigation of high-temperature damage by application of kaolin and pinolene on young olive trees (Olea europaea L.): A preliminary experiment to assess biometric, eco-physiological and nutraceutical parameters. Agronomy 11, 1884 (2021).

    Google Scholar 

  54. Roussos, P. A., Denaxa, N.-K., Damvakaris, T., Stournaras, V. & Argyrokastritis, I. Effect of alleviating products with different mode of action on physiology and yield of olive under drought. Sci. Hortic. 125, 700–711 (2010).

    Google Scholar 

  55. Nanos, P. A. M. G. D. Leaf and fruit responses to kaolin particle film applied onto mature olive trees. J. Biol. Agric. Healthc. 5, 17 (2015).

    Google Scholar 

  56. Segura-Monroy, S., Uribe-Vallejo, A., Ramirez-Godoy, A. & Restrepo-Diaz, H. Effect of kaolin application on growth, water use efficiency, and leaf epidermis characteristics of Physalis peruviana L. seedlings under two irrigation regimes. J. Agric. Sci. Technol. 17(6), 1585–1596 (2015).

    Google Scholar 

  57. Herrera-Martínez, V. et al. Effect of culture conditions on stomatal density and stomatal index in four cactus species. Haseltonia 20, 43–50 (2015).

    Google Scholar 

  58. Aleanizy, F. S., Alqahtani, F., Al Gohary, O., El Tahir, E. & Al Shalabi, R. Determination and characterization of metronidazole–kaolin interaction. Saudi Pharm. J. 23, 167–176 (2015).

    Google Scholar 

  59. Avornyo, A. K., Hasan, S. W., Banat, F. & Chrysikopoulos, C. V. Preparation, characterization, and applications of kaolin/kaolin-based composite membranes in oily wastewater treatment: Recent developments, challenges, and opportunities. J. Environ. Manage. 370, 122800 (2024).

    Google Scholar 

  60. Féat, A., Federle, W., Kamperman, M. & Van Der Gucht, J. Coatings preventing insect adhesion: An overview. Prog. Org. Coat. 134, 349–359 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Mr. Ismail Bennani from the UM6P core lab for their electron microscopy service. We also want to thank the cactus growers in Marchouch and Berrechid regions for helping with fieldwork and UM6P for funding this research.

Author information

Authors and Affiliations

Authors

Contributions

CR, KEF, MEB conceived and designed research. CR, AT and MAS conducted experiments. KEF, NT, OM and AT analyzed data. CR, KEF, AT, and NT wrote the manuscript. MEB, NT and OM review of the article. All authors read and approved the manuscript.

Corresponding author

Correspondence to
Chaimae Ramdani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Ramdani, C., El Fakhouri, K., Tika, A. et al. Kaolin particle film repellent effect against the wild cochineal Dactylopius opuntiae and its impact on cactus pear health.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-33560-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-33560-z

Keywords

  • Wild cochineal
  • Cactus
  • Kaolin
  • Preventive approach
  • Surface wettability

Supplementary Material 1Supplementary Material 2Supplementary Material 3


Source: Ecology - nature.com

AedesTraits: A global dataset of temperature–dependent trait responses in Aedes mosquitoes

Phenology modulates the top-down control of ants on bird ectoparasites: from mutualism to antagonism

Back to Top