Abstract
Meiofauna are minute organisms that dominate the ‘small food web’—communities which, in modern sediments, play a key role in ecosystem functioning through benthic–pelagic coupling and carbon drawdown. Despite their importance today, the ecological contribution of such communities in ancient settings remains poorly understood, largely due to the sparse and fragmentary nature of their fossil record. Here we document trace fossils of a meiofaunal ecosystem that flourished in the immediate aftermath of the end-Ordovician extinction event, preserved in the Soom Shale Lagerstätte, South Africa. Micro computed tomography scanning reveals three-dimensionally preserved ichnofossils including two burrow/trail morphotypes and microcoprolites that are attributed to a low-diversity meiofaunal benthic community, dominated by nematodes and foraminifera. The ichnofossils consistently occur within fossilized marine-snow-bearing beds, where there is a clear pattern in their distribution and frequency of occurrence. This pattern mirrors behavioural responses of meiofauna to fluxes in delivery of organic matter to the sea floor recorded in modern oxygen-limited marine environments. The Soom Shale assemblage provides a remarkable insight into, not only one of the oldest meiofaunal trace-fossil records, but also the earliest account of an ancient behavioural response to episodic phytoplankton blooms.
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Trophic flexibility of marine diplonemids – switching from osmotrophy to bacterivory
Regional restructuring in planktic foraminifera communities through Pliocene-early Pleistocene climate variability
Multi-faceted examination of a deepwater seamount reveals ecological patterns among coral and sponge communities in the equatorial Pacific
Data availability
The trace-fossil measurements and simplified borehole log are available via figshare at https://doi.org/10.25375/uct.30136477.v1 (ref. 73). The supplementary μCT scan dataset is available via figshare at https://doi.org/10.25375/uct.30112654.v1 (ref. 74) and is available under restricted access as per the Iziko South African Museum standard operating procedures. These data may be obtained from the lead author upon reasonable request. The borehole core containing in situ trace fossils is held at the Iziko South African Museum.
References
Gabbott, S. E., Browning, C., Theron, J. N. & Whittle, R. J. The late Ordovician Soom Shale Lagerstätte: an extraordinary post-glacial fossil and sedimentary record. J. Geol. Soc. 174, 1–9 (2017).
Google Scholar
Young, G. M., Minter, W. E. L. & Theron, J. N. Geochemistry and palaeogeography of upper Ordovician glaciogenic sedimentary rocks in the Table Mountain Group, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 214, 323–345 (2004).
Google Scholar
Gabbott, S. E. Taphonomy of the Ordovician Soom Shale Lagerstätte: an example of soft tissue preservation in clay minerals. Palaeontology 41, 631–668 (1998).
Löhr, S. C. & Kennedy, M. J. Micro-trace fossils reveal pervasive reworking of Pliocene sapropels by low-oxygen-adapted benthic meiofauna. Nat. Commun. 6, 6589 (2015).
Google Scholar
Rhoads, D. C. & Morse, J. W. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia 4, 413–428 (1971).
Google Scholar
Schieber, J. & Wilson, R. D. Burrows without a trace—how meioturbation affects rock fabrics and leaves a record of meiobenthos activity in shales and mudstones. Palaontol. Z. 95, 767–791 (2021).
Google Scholar
Savrda, C. E. & Bottjer, D. J. Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: application to Upper Cretaceous Niobrara Formation, Colorado. Palaeogeogr. Palaeoclimatol. Palaeoecol. 74, 49–74 (1989).
Google Scholar
Giere, O. Meiobenthology (Springer, 2008).
Kuipers, B. R., De Wilde, P. & Creutzberg, F. Energy flow in a tidal flat ecosystem. Mar. Ecol. Prog. Ser. 5, 215–221 (1981).
Google Scholar
Chen, J.-Y. et al. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 305, 218–222 (2004).
Google Scholar
Harvey, T. H. & Butterfield, N. J. Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos. Nat. Ecol. Evol. 1, 0022 (2017).
Google Scholar
Maas, A., Huang, D., Chen, J., Waloszek, D. & Braun, A. Maotianshan-Shale nemathelminths—morphology, biology, and the phylogeny of Nemathelminthes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254, 288–306 (2007).
Google Scholar
Han, J. et al. A Cloudina-like fossil with evidence of asexual reproduction from the lowest Cambrian, South China. Geol. Mag. 154, 1294–1305 (2017).
Google Scholar
Mángano, M. G., Hawkes, C. D. & Caron, J.-B. Trace fossils associated with Burgess Shale non-biomineralized carapaces: bringing taphonomic and ecological controls into focus. R. Soc. Open Sci. 6, 172074 (2019).
Google Scholar
Baliński, A., Sun, Y. & Dzik, J. Traces of marine nematodes from 470 million years old Early Ordovician rocks in China. Nematology 15, 567–574 (2013).
Google Scholar
Parry, L. A. et al. Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nat. Ecol. Evol. 1, 1455–1464 (2017).
Google Scholar
Pike, J., Bernhard, J. M., Moreton, S. G. & Butler, I. B. Microbioirrigation of marine sediments in dysoxic environments: implications for early sediment fabric formation and diagenetic processes. Geology 29, 923–926 (2001).
Google Scholar
Villegas-Martín, J. & Netto, R. G. Permian macroburrows as microhabitats for meiofauna organisms: an ancient behaviour common in extant organisms. Lethaia 52, 31–43 (2019).
Google Scholar
Darroch, S. A. F. et al. The trace fossil record of the Nama Group, Namibia: exploring the terminal Ediacaran roots of the Cambrian explosion. Earth-Sci. Rev. 212, 103435 (2021).
Google Scholar
Mángano, M. G. et al. Nonbiomineralized carapaces in Cambrian seafloor landscapes (Sirius Passet, Greenland): opening a new window into early Phanerozoic benthic ecology. Geology 40, 519–522 (2012).
Google Scholar
Schratzberger, M. & Ingels, J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25 (2018).
Google Scholar
Zeppilli, D. et al. Is the meiofauna a good indicator for climate change and anthropogenic impacts?. Mar. Biodivers. 45, 505–535 (2015).
Google Scholar
Bianchi, T. S. et al. What global biogeochemical consequences will marine animal–sediment interactions have during climate change? Elementa 9, 00180 (2021).
Wood, R. & Erwin, D. H. Innovation not recovery: dynamic redox promotes metazoan radiations. Biol. Rev. 93, 863–873 (2018).
Google Scholar
Gabbott, S. E., Zalasiewicz, J., Aldridge, R. J. & Theron, J. N. Eolian input into the Late Ordovician postglacial Soom Shale, South Africa. Geology 38, 1103–1106 (2010).
Google Scholar
Rust, I. C. On the Sedimentation of the Table Mountain Group in the Western Cape Province (Stellenbosch Univ., 1967).
Macquaker, J. H. S., Keller, M. A. & Davies, S. J. Algal blooms and ‘marine snow’: mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments. J. Sediment. Res. 80, 934–942 (2010).
Google Scholar
Browning, C. Dust-Bearing Marine Mudstones in the Cedarberg Formation (Late Ordovician–Early Silurian, South Africa) Record Deglacial Palaeoclimate and a Cryptic Meiofaunal Ecosystem. PhD thesis, Univ. Cape Town (2024).
Stow, D. & Smillie, Z. Distinguishing between deep-water sediment facies: turbidites, contourites and hemipelagites. Geosciences 10, 68 (2020).
Google Scholar
D’Alessandro, A. & Bromley, R. G. Meniscate trace fossils and the Muensteria-Taenidium problem. Palaeontology 30, 743–763 (1987).
Bromley, R. G. Trace Fossils: Biology and Taphonomy (Unwin Hyman, 1990).
Buatois, L. A. & Mángano, M. G. Ichnology: Organism-Substrate Interactions in Space and Time (Cambridge Univ. Press, 2011).
Knaust, D. Invertebrate coprolites and cololites revised. Pap. Palaeontol. 6, 385–423 (2020).
Google Scholar
Cuomo, M. C. & Bartholomew, P. R. Pelletal black shale fabrics: their origin and significance. Geol. Soc. 58, 221–232 (1991).
Google Scholar
Sawłowicz, Z. Framboids: From Their Origin to Application Vol. 88 (Wydawnictwo Oddziału Polskiej Akademii Nauk Warsaw, 2000).
Álvarez-Iglesias, P. & Rubio, B. Early diagenesis of organic-matter-rich sediments in a ría environment: organic matter sources, pyrites morphology and limitation of pyritization at depth. Estuar. Coast. Shelf Sci. 100, 113–123 (2012).
Google Scholar
Haynes, J. R. Foraminifera (Springer, 1981).
Hart, M. B. et al. The search for the origin of the planktic Foraminifera. J. Geol. Soc. 160, 341–343 (2003).
Google Scholar
Buatois, L. A., Wisshak, M., Wilson, M. A. & Mángano, M. G. Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth-Sci. Rev. 164, 102–181 (2017).
Google Scholar
Martens, P. M. & Schockaert, E. R. The importance of turbellarians in the marine meiobenthos: a review. Hydrobiologia 132, 295–303 (1986).
Google Scholar
Shcherbakov, D., Timm, T., Tzetlin, A., Vinn, O. & Zhuravlev, A. A probable oligochaete from an Early Triassic Lagerstätte of the southern Cis-Urals and its evolutionary implications. Acta Palaeontol. Polon. 65, 219–233 (2020).
Cuomo, M. C. & Rhoads, D. C. Biogenic sedimentary fabrics associated with pioneering polychaete assemblages; modern and ancient. J. Sediment. Res. 57, 537–543 (1987).
Kulkarni, K. G. & Panchang, R. New insights into polychaete traces and fecal pellets: another complex ichnotaxon?. PLoS ONE 10, e0139933 (2015).
Google Scholar
Baucon, A. et al. Life in near-anoxic conditions: a case study of the ichnology and infaunal ecology of Silurian graptolitic black shales from Sardinia, Italy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 556, 109889 (2020).
Google Scholar
Levin, L. A. in Oceanography and Marine Biology: An Annual Review Vol. 41 (eds Gibson, R. N. & Atkinson, R. J. A.) 1–45 (2003).
Sturdivant, S. K., Diaz, R. J. & Cutter, G. R. Bioturbation in a declining oxygen environment, in situ observations from Wormcam. PLoS ONE 7, e34539 (2012).
Google Scholar
Moens, T. et al. in Nematoda Vol. 2 (ed. Schmidt-Rhaesa, A.) 109–152 (De Gruyter, 2013).
Severin, K. P., Culver, S. J. & Blanpied, C. Burrows and trails produced by Quinqueloculina impressa Reuss, a benthic foraminifer, in fine-grained sediment. Sedimentology 29, 897–901 (1982).
Google Scholar
Knaust, D. Meiobenthic trace fossils comprising a miniature ichnofabric from Late Permian carbonates of the Oman Mountains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286, 81–87 (2010).
Google Scholar
Gabbott, S. E. The Palaeontology and Taphonomy of the Soom Shale: An Upper Ordovician Lagerstatte, South Africa (Univ. Leicester, 1996).
Soetaert, K., Muthumbi, A. & Heip, C. Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Mar. Ecol. Prog. Ser. 242, 179–193 (2002).
Google Scholar
Buatois, L. A. & Mángano, M. G. Ichnodiversity and ichnodisparity: significance and caveats. Lethaia 46, 281–292 (2013).
Google Scholar
Savrda, C. E. in Trace Fossils: Concepts, Problems, Prospects (ed Miller, W.) 149–158 (Elsevier, 2007).
Zeppilli, D. et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodivers. 48, 35–71 (2018).
Google Scholar
Hess, S., Jorissen, F. J., Venet, V. & Abu-Zied, R. Benthic foraminiferal recovery after recent turbidite deposition in Cap Breton Canyon, Bay of Biscay. J. Foraminifer. Res. 35, 114–129 (2005).
Google Scholar
Tsujimoto, A. et al. Changes in deep-sea benthic foraminiferal fauna caused by turbidites deposited after the 2011 Tohoku-oki earthquake. Mar. Geol. 419, 106045 (2020).
Google Scholar
Smart, C. W., King, S. C., Gooday, A. J., Murray, J. W. & Thomas, E. A benthic foraminiferal proxy of pulsed organic matter paleofluxes. Mar. Micropaleontol. 23, 89–99 (1994).
Google Scholar
Gooday, A. J. & Rathburn, A. E. Temporal variability in living deep-sea benthic foraminifera: a review. Earth-Sci. Rev. 46, 187–212 (1999).
Google Scholar
Veit-Köhler, G., Gerdes, D., Quiroga, E., Hebbeln, D. & Sellanes, J. Metazoan meiofauna within the oxygen-minimum zone off Chile: results of the 2001-PUCK expedition. Deep Sea Res. II 56, 1105–1111 (2009).
Google Scholar
Neira, C., Sellanes, J., Levin, L. A. & Arntz, W. E. Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep Sea Res. I 48, 2453–2472 (2001).
Google Scholar
Sergeeva, N. G., Mazlumyan, S. A., Lichtschlag, A. & Holtappels, M. Benthic protozoa and metazoa living under anoxic and sulfide conditions in the Black Sea: direct observations of actively moving Ciliophora and Nematoda. Intl J. Mar. Sci. 4, 1–11 (2014).
Bernhard, J. M., Habura, A. & Bowser, S. S. An endobiont-bearing allogromiid from the Santa Barbara Basin: implications for the early diversification of foraminifera. J. Geophys. Res. 111, 2005JG000158 (2006).
Google Scholar
Nomaki, H. et al. Benthic foraminifera as trophic links between phytodetritus and benthic metazoans: carbon and nitrogen isotopic evidence. Mar. Ecol. Prog. Ser. 357, 153–164 (2008).
Google Scholar
Beaulieu, S. E. in Oceanography and Marine Biology (eds Gibson, R. N. et al.) 179–217 (CRC, 2002).
Alldredge, A. L. & Silver, M. W. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20, 41–82 (1988).
Google Scholar
Jumars, P. A. et al. in Productivity of the Oceans: Present and Past (eds Berger, W. H. et al.) 291–311 (Wiley, 1989).
Gooday, A. J. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. J. Oceanogr. 58, 305–332 (2002).
Google Scholar
Nomaki, H., Heinz, P., Nakatsuka, T., Shimanaga, M. & Kitazato, H. Species-specific ingestion of organic carbon by deep-sea benthic foraminifera and meiobenthos: in situ tracer experiments. Limnol. Oceanogr. 50, 134–146 (2005).
Google Scholar
Nomaki, H., Heinz, P., Hemleben, C. & Kitazato, H. Behavior and response of deep-sea benthic foraminifera to freshly supplied organic matter: a laboratory feeding experiment in microcosm environments. J. Foraminifer. Res. 35, 103–113 (2005).
Google Scholar
Nomaki, H. et al. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. Glob. Change Biol. 27, 6139–6155 (2021).
Google Scholar
Gooday, A. J. A response by benthic foraminifera to the deposition of phytodetritus in the deep sea. Nature 332, 70–73 (1988).
Google Scholar
Schindelin, J., Rueden, C. T., Hiner, M. C. & Eliceiri, K. W. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev. 82, 518–529 (2015).
Google Scholar
Browning, C. et al. Trace fossil measurements and simplified core log for research borehole HF01 (Holfontein, Cedarberg, SA). figshare https://doi.org/10.25375/uct.30136477 (2025).
Browning, C. et al. Micro-CT scans of Mudrock core samples containing trace fossils. figshare https://doi.org/10.25375/uct.30112654.v1 (2025).
Torsvik, T. H. & Cocks, L. R. M. Gondwana from top to base in space and time. Gondwana Res. 24, 999–1030 (2013).
Google Scholar
Vandenbroucke, T. R. A., Gabbott, S. E., Paris, F., Aldridge, R. J. & Theron, J. N. Chitinozoans and the age of the Soom Shale, an Ordovician black shale Lagerstätte, South Africa. J. Micropalaeontol. 28, 53–66 (2009).
Google Scholar
Acknowledgements
This work was supported by the following funding agencies: National Research Foundation, South Africa through the Thuthuka grant 121894 and African Origins Platform AOP240326210874 (C.B. and E.M.B.); Iziko Museums of South Africa (C.B.); The Council for Geoscience (C.B.); National Geographic grant GEFNE90-13 (S.E.G. and C.B.); the European Union (A.E.A. and A.M.) and La Région Nouvelle Aquitaine (A.E.A. and A.M.); Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grants 311727–20 (M.G.M.) and 422931-20/25 (L.A.B.); George J. McLeod Enhancement Chair in Geology (M.G.M.). We also acknowledge the PLATINA platform of the IC2MP Institute (University of Poitiers) and the Central Analytical Facility (CAF), Stellenbosch University, for access to µCT scanners. We further thank M. Tshibalanganda, A. du Plessis, S. Le Roux and L. Coetzer for their technical assistance and support at the CAF and we gratefully acknowledge the du Plessis family at Holfontein for granting land access.
Author information
Authors and Affiliations
Contributions
C.B., S.E.G. and E.M.B. conceptualized and designed the study. C.B., A.E.A. and A.M. scanned the trace fossils and visualized the scan data. C.B. and S.E.G. performed the petrographic analysis. C.B. and A.M. produced illustrations and figures. C.B., S.E.G., M.G.M., L.A.B. and E.M.B. performed the ichnological analysis and description. C.B. wrote the first draft of the paper and all authors contributed to writing, editing and approval of the final paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks Anette E. S. Högström, Renata Netto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–6, Discussions and References.
Reporting Summary
Peer Review File
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and permissions
About this article
Cite this article
Browning, C., Gabbott, S.E., Mángano, M.G. et al. Marine snow fuels an opportunistic small food web in the Late Ordovician Soom Shale Lagerstätte.
Nat Ecol Evol (2025). https://doi.org/10.1038/s41559-025-02923-0
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41559-025-02923-0
Source: Ecology - nature.com
