in

Marine snow fuels an opportunistic small food web in the Late Ordovician Soom Shale Lagerstätte


Abstract

Meiofauna are minute organisms that dominate the ‘small food web’—communities which, in modern sediments, play a key role in ecosystem functioning through benthic–pelagic coupling and carbon drawdown. Despite their importance today, the ecological contribution of such communities in ancient settings remains poorly understood, largely due to the sparse and fragmentary nature of their fossil record. Here we document trace fossils of a meiofaunal ecosystem that flourished in the immediate aftermath of the end-Ordovician extinction event, preserved in the Soom Shale Lagerstätte, South Africa. Micro computed tomography scanning reveals three-dimensionally preserved ichnofossils including two burrow/trail morphotypes and microcoprolites that are attributed to a low-diversity meiofaunal benthic community, dominated by nematodes and foraminifera. The ichnofossils consistently occur within fossilized marine-snow-bearing beds, where there is a clear pattern in their distribution and frequency of occurrence. This pattern mirrors behavioural responses of meiofauna to fluxes in delivery of organic matter to the sea floor recorded in modern oxygen-limited marine environments. The Soom Shale assemblage provides a remarkable insight into, not only one of the oldest meiofaunal trace-fossil records, but also the earliest account of an ancient behavioural response to episodic phytoplankton blooms.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location map and geological context.
Fig. 2: Fossilized marine snow, otherwise known as organomineralic aggregates (OMA), preserved within facies 1.
Fig. 3: Trace fossils and polyframboid-filled endocasts of benthic foraminifera.
Fig. 4: Occurrence and distribution patterns of trace fossils and OMAs within distinct laminae.
Fig. 5: A modern analogue for interpreting Soom meiofaunal trace fossils and OMAs.

Similar content being viewed by others

Trophic flexibility of marine diplonemids – switching from osmotrophy to bacterivory

Regional restructuring in planktic foraminifera communities through Pliocene-early Pleistocene climate variability

Multi-faceted examination of a deepwater seamount reveals ecological patterns among coral and sponge communities in the equatorial Pacific

Data availability

The trace-fossil measurements and simplified borehole log are available via figshare at https://doi.org/10.25375/uct.30136477.v1 (ref. 73). The supplementary μCT scan dataset is available via figshare at https://doi.org/10.25375/uct.30112654.v1 (ref. 74) and is available under restricted access as per the Iziko South African Museum standard operating procedures. These data may be obtained from the lead author upon reasonable request. The borehole core containing in situ trace fossils is held at the Iziko South African Museum.

References

  1. Gabbott, S. E., Browning, C., Theron, J. N. & Whittle, R. J. The late Ordovician Soom Shale Lagerstätte: an extraordinary post-glacial fossil and sedimentary record. J. Geol. Soc. 174, 1–9 (2017).

    Article 

    Google Scholar 

  2. Young, G. M., Minter, W. E. L. & Theron, J. N. Geochemistry and palaeogeography of upper Ordovician glaciogenic sedimentary rocks in the Table Mountain Group, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 214, 323–345 (2004).

    Article 

    Google Scholar 

  3. Gabbott, S. E. Taphonomy of the Ordovician Soom Shale Lagerstätte: an example of soft tissue preservation in clay minerals. Palaeontology 41, 631–668 (1998).

    Google Scholar 

  4. Löhr, S. C. & Kennedy, M. J. Micro-trace fossils reveal pervasive reworking of Pliocene sapropels by low-oxygen-adapted benthic meiofauna. Nat. Commun. 6, 6589 (2015).

    Article 
    PubMed 

    Google Scholar 

  5. Rhoads, D. C. & Morse, J. W. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia 4, 413–428 (1971).

    Article 

    Google Scholar 

  6. Schieber, J. & Wilson, R. D. Burrows without a trace—how meioturbation affects rock fabrics and leaves a record of meiobenthos activity in shales and mudstones. Palaontol. Z. 95, 767–791 (2021).

    Article 

    Google Scholar 

  7. Savrda, C. E. & Bottjer, D. J. Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: application to Upper Cretaceous Niobrara Formation, Colorado. Palaeogeogr. Palaeoclimatol. Palaeoecol. 74, 49–74 (1989).

    Article 

    Google Scholar 

  8. Giere, O. Meiobenthology (Springer, 2008).

  9. Kuipers, B. R., De Wilde, P. & Creutzberg, F. Energy flow in a tidal flat ecosystem. Mar. Ecol. Prog. Ser. 5, 215–221 (1981).

    Article 

    Google Scholar 

  10. Chen, J.-Y. et al. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 305, 218–222 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  11. Harvey, T. H. & Butterfield, N. J. Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos. Nat. Ecol. Evol. 1, 0022 (2017).

    Article 

    Google Scholar 

  12. Maas, A., Huang, D., Chen, J., Waloszek, D. & Braun, A. Maotianshan-Shale nemathelminths—morphology, biology, and the phylogeny of Nemathelminthes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254, 288–306 (2007).

    Article 

    Google Scholar 

  13. Han, J. et al. A Cloudina-like fossil with evidence of asexual reproduction from the lowest Cambrian, South China. Geol. Mag. 154, 1294–1305 (2017).

    Article 
    CAS 

    Google Scholar 

  14. Mángano, M. G., Hawkes, C. D. & Caron, J.-B. Trace fossils associated with Burgess Shale non-biomineralized carapaces: bringing taphonomic and ecological controls into focus. R. Soc. Open Sci. 6, 172074 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  15. Baliński, A., Sun, Y. & Dzik, J. Traces of marine nematodes from 470 million years old Early Ordovician rocks in China. Nematology 15, 567–574 (2013).

    Article 

    Google Scholar 

  16. Parry, L. A. et al. Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nat. Ecol. Evol. 1, 1455–1464 (2017).

    Article 
    PubMed 

    Google Scholar 

  17. Pike, J., Bernhard, J. M., Moreton, S. G. & Butler, I. B. Microbioirrigation of marine sediments in dysoxic environments: implications for early sediment fabric formation and diagenetic processes. Geology 29, 923–926 (2001).

    2.0.CO;2″ data-track-item_id=”10.1130/0091-7613(2001)029<0923:MOMSID>2.0.CO;2″ data-track-value=”article reference” data-track-action=”article reference” href=”https://doi.org/10.1130%2F0091-7613%282001%29029%3C0923%3AMOMSID%3E2.0.CO%3B2″ aria-label=”Article reference 17″ data-doi=”10.1130/0091-7613(2001)029<0923:MOMSID>2.0.CO;2″>Article 

    Google Scholar 

  18. Villegas-Martín, J. & Netto, R. G. Permian macroburrows as microhabitats for meiofauna organisms: an ancient behaviour common in extant organisms. Lethaia 52, 31–43 (2019).

    Article 

    Google Scholar 

  19. Darroch, S. A. F. et al. The trace fossil record of the Nama Group, Namibia: exploring the terminal Ediacaran roots of the Cambrian explosion. Earth-Sci. Rev. 212, 103435 (2021).

    Article 
    CAS 

    Google Scholar 

  20. Mángano, M. G. et al. Nonbiomineralized carapaces in Cambrian seafloor landscapes (Sirius Passet, Greenland): opening a new window into early Phanerozoic benthic ecology. Geology 40, 519–522 (2012).

    Article 

    Google Scholar 

  21. Schratzberger, M. & Ingels, J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25 (2018).

    Article 

    Google Scholar 

  22. Zeppilli, D. et al. Is the meiofauna a good indicator for climate change and anthropogenic impacts?. Mar. Biodivers. 45, 505–535 (2015).

    Article 

    Google Scholar 

  23. Bianchi, T. S. et al. What global biogeochemical consequences will marine animal–sediment interactions have during climate change? Elementa 9, 00180 (2021).

    Google Scholar 

  24. Wood, R. & Erwin, D. H. Innovation not recovery: dynamic redox promotes metazoan radiations. Biol. Rev. 93, 863–873 (2018).

    Article 
    PubMed 

    Google Scholar 

  25. Gabbott, S. E., Zalasiewicz, J., Aldridge, R. J. & Theron, J. N. Eolian input into the Late Ordovician postglacial Soom Shale, South Africa. Geology 38, 1103–1106 (2010).

    Article 

    Google Scholar 

  26. Rust, I. C. On the Sedimentation of the Table Mountain Group in the Western Cape Province (Stellenbosch Univ., 1967).

  27. Macquaker, J. H. S., Keller, M. A. & Davies, S. J. Algal blooms and ‘marine snow’: mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments. J. Sediment. Res. 80, 934–942 (2010).

    Article 

    Google Scholar 

  28. Browning, C. Dust-Bearing Marine Mudstones in the Cedarberg Formation (Late Ordovician–Early Silurian, South Africa) Record Deglacial Palaeoclimate and a Cryptic Meiofaunal Ecosystem. PhD thesis, Univ. Cape Town (2024).

  29. Stow, D. & Smillie, Z. Distinguishing between deep-water sediment facies: turbidites, contourites and hemipelagites. Geosciences 10, 68 (2020).

    Article 
    CAS 

    Google Scholar 

  30. D’Alessandro, A. & Bromley, R. G. Meniscate trace fossils and the Muensteria-Taenidium problem. Palaeontology 30, 743–763 (1987).

    Google Scholar 

  31. Bromley, R. G. Trace Fossils: Biology and Taphonomy (Unwin Hyman, 1990).

  32. Buatois, L. A. & Mángano, M. G. Ichnology: Organism-Substrate Interactions in Space and Time (Cambridge Univ. Press, 2011).

  33. Knaust, D. Invertebrate coprolites and cololites revised. Pap. Palaeontol. 6, 385–423 (2020).

    Article 

    Google Scholar 

  34. Cuomo, M. C. & Bartholomew, P. R. Pelletal black shale fabrics: their origin and significance. Geol. Soc. 58, 221–232 (1991).

    Article 

    Google Scholar 

  35. Sawłowicz, Z. Framboids: From Their Origin to Application Vol. 88 (Wydawnictwo Oddziału Polskiej Akademii Nauk Warsaw, 2000).

  36. Álvarez-Iglesias, P. & Rubio, B. Early diagenesis of organic-matter-rich sediments in a ría environment: organic matter sources, pyrites morphology and limitation of pyritization at depth. Estuar. Coast. Shelf Sci. 100, 113–123 (2012).

    Article 

    Google Scholar 

  37. Haynes, J. R. Foraminifera (Springer, 1981).

  38. Hart, M. B. et al. The search for the origin of the planktic Foraminifera. J. Geol. Soc. 160, 341–343 (2003).

    Article 

    Google Scholar 

  39. Buatois, L. A., Wisshak, M., Wilson, M. A. & Mángano, M. G. Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth-Sci. Rev. 164, 102–181 (2017).

    Article 
    CAS 

    Google Scholar 

  40. Martens, P. M. & Schockaert, E. R. The importance of turbellarians in the marine meiobenthos: a review. Hydrobiologia 132, 295–303 (1986).

    Article 

    Google Scholar 

  41. Shcherbakov, D., Timm, T., Tzetlin, A., Vinn, O. & Zhuravlev, A. A probable oligochaete from an Early Triassic Lagerstätte of the southern Cis-Urals and its evolutionary implications. Acta Palaeontol. Polon. 65, 219–233 (2020).

  42. Cuomo, M. C. & Rhoads, D. C. Biogenic sedimentary fabrics associated with pioneering polychaete assemblages; modern and ancient. J. Sediment. Res. 57, 537–543 (1987).

    Google Scholar 

  43. Kulkarni, K. G. & Panchang, R. New insights into polychaete traces and fecal pellets: another complex ichnotaxon?. PLoS ONE 10, e0139933 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  44. Baucon, A. et al. Life in near-anoxic conditions: a case study of the ichnology and infaunal ecology of Silurian graptolitic black shales from Sardinia, Italy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 556, 109889 (2020).

    Article 

    Google Scholar 

  45. Levin, L. A. in Oceanography and Marine Biology: An Annual Review Vol. 41 (eds Gibson, R. N. & Atkinson, R. J. A.) 1–45 (2003).

  46. Sturdivant, S. K., Diaz, R. J. & Cutter, G. R. Bioturbation in a declining oxygen environment, in situ observations from Wormcam. PLoS ONE 7, e34539 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  47. Moens, T. et al. in Nematoda Vol. 2 (ed. Schmidt-Rhaesa, A.) 109–152 (De Gruyter, 2013).

  48. Severin, K. P., Culver, S. J. & Blanpied, C. Burrows and trails produced by Quinqueloculina impressa Reuss, a benthic foraminifer, in fine-grained sediment. Sedimentology 29, 897–901 (1982).

    Article 

    Google Scholar 

  49. Knaust, D. Meiobenthic trace fossils comprising a miniature ichnofabric from Late Permian carbonates of the Oman Mountains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286, 81–87 (2010).

    Article 

    Google Scholar 

  50. Gabbott, S. E. The Palaeontology and Taphonomy of the Soom Shale: An Upper Ordovician Lagerstatte, South Africa (Univ. Leicester, 1996).

  51. Soetaert, K., Muthumbi, A. & Heip, C. Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Mar. Ecol. Prog. Ser. 242, 179–193 (2002).

    Article 

    Google Scholar 

  52. Buatois, L. A. & Mángano, M. G. Ichnodiversity and ichnodisparity: significance and caveats. Lethaia 46, 281–292 (2013).

    Article 

    Google Scholar 

  53. Savrda, C. E. in Trace Fossils: Concepts, Problems, Prospects (ed Miller, W.) 149–158 (Elsevier, 2007).

  54. Zeppilli, D. et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodivers. 48, 35–71 (2018).

    Article 

    Google Scholar 

  55. Hess, S., Jorissen, F. J., Venet, V. & Abu-Zied, R. Benthic foraminiferal recovery after recent turbidite deposition in Cap Breton Canyon, Bay of Biscay. J. Foraminifer. Res. 35, 114–129 (2005).

    Article 

    Google Scholar 

  56. Tsujimoto, A. et al. Changes in deep-sea benthic foraminiferal fauna caused by turbidites deposited after the 2011 Tohoku-oki earthquake. Mar. Geol. 419, 106045 (2020).

    Article 
    CAS 

    Google Scholar 

  57. Smart, C. W., King, S. C., Gooday, A. J., Murray, J. W. & Thomas, E. A benthic foraminiferal proxy of pulsed organic matter paleofluxes. Mar. Micropaleontol. 23, 89–99 (1994).

    Article 

    Google Scholar 

  58. Gooday, A. J. & Rathburn, A. E. Temporal variability in living deep-sea benthic foraminifera: a review. Earth-Sci. Rev. 46, 187–212 (1999).

    Article 
    CAS 

    Google Scholar 

  59. Veit-Köhler, G., Gerdes, D., Quiroga, E., Hebbeln, D. & Sellanes, J. Metazoan meiofauna within the oxygen-minimum zone off Chile: results of the 2001-PUCK expedition. Deep Sea Res. II 56, 1105–1111 (2009).

    Article 

    Google Scholar 

  60. Neira, C., Sellanes, J., Levin, L. A. & Arntz, W. E. Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep Sea Res. I 48, 2453–2472 (2001).

    Article 
    CAS 

    Google Scholar 

  61. Sergeeva, N. G., Mazlumyan, S. A., Lichtschlag, A. & Holtappels, M. Benthic protozoa and metazoa living under anoxic and sulfide conditions in the Black Sea: direct observations of actively moving Ciliophora and Nematoda. Intl J. Mar. Sci. 4, 1–11 (2014).

    Google Scholar 

  62. Bernhard, J. M., Habura, A. & Bowser, S. S. An endobiont-bearing allogromiid from the Santa Barbara Basin: implications for the early diversification of foraminifera. J. Geophys. Res. 111, 2005JG000158 (2006).

    Article 

    Google Scholar 

  63. Nomaki, H. et al. Benthic foraminifera as trophic links between phytodetritus and benthic metazoans: carbon and nitrogen isotopic evidence. Mar. Ecol. Prog. Ser. 357, 153–164 (2008).

    Article 

    Google Scholar 

  64. Beaulieu, S. E. in Oceanography and Marine Biology (eds Gibson, R. N. et al.) 179–217 (CRC, 2002).

  65. Alldredge, A. L. & Silver, M. W. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 20, 41–82 (1988).

    Article 

    Google Scholar 

  66. Jumars, P. A. et al. in Productivity of the Oceans: Present and Past (eds Berger, W. H. et al.) 291–311 (Wiley, 1989).

  67. Gooday, A. J. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. J. Oceanogr. 58, 305–332 (2002).

    Article 
    CAS 

    Google Scholar 

  68. Nomaki, H., Heinz, P., Nakatsuka, T., Shimanaga, M. & Kitazato, H. Species-specific ingestion of organic carbon by deep-sea benthic foraminifera and meiobenthos: in situ tracer experiments. Limnol. Oceanogr. 50, 134–146 (2005).

    Article 
    CAS 

    Google Scholar 

  69. Nomaki, H., Heinz, P., Hemleben, C. & Kitazato, H. Behavior and response of deep-sea benthic foraminifera to freshly supplied organic matter: a laboratory feeding experiment in microcosm environments. J. Foraminifer. Res. 35, 103–113 (2005).

    Article 

    Google Scholar 

  70. Nomaki, H. et al. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. Glob. Change Biol. 27, 6139–6155 (2021).

    Article 

    Google Scholar 

  71. Gooday, A. J. A response by benthic foraminifera to the deposition of phytodetritus in the deep sea. Nature 332, 70–73 (1988).

    Article 

    Google Scholar 

  72. Schindelin, J., Rueden, C. T., Hiner, M. C. & Eliceiri, K. W. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev. 82, 518–529 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  73. Browning, C. et al. Trace fossil measurements and simplified core log for research borehole HF01 (Holfontein, Cedarberg, SA). figshare https://doi.org/10.25375/uct.30136477 (2025).

  74. Browning, C. et al. Micro-CT scans of Mudrock core samples containing trace fossils. figshare https://doi.org/10.25375/uct.30112654.v1 (2025).

  75. Torsvik, T. H. & Cocks, L. R. M. Gondwana from top to base in space and time. Gondwana Res. 24, 999–1030 (2013).

    Article 

    Google Scholar 

  76. Vandenbroucke, T. R. A., Gabbott, S. E., Paris, F., Aldridge, R. J. & Theron, J. N. Chitinozoans and the age of the Soom Shale, an Ordovician black shale Lagerstätte, South Africa. J. Micropalaeontol. 28, 53–66 (2009).

    Article 

    Google Scholar 

Download references

Acknowledgements

This work was supported by the following funding agencies: National Research Foundation, South Africa through the Thuthuka grant 121894 and African Origins Platform AOP240326210874 (C.B. and E.M.B.); Iziko Museums of South Africa (C.B.); The Council for Geoscience (C.B.); National Geographic grant GEFNE90-13 (S.E.G. and C.B.); the European Union (A.E.A. and A.M.) and La Région Nouvelle Aquitaine (A.E.A. and A.M.); Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grants 311727–20 (M.G.M.) and 422931-20/25 (L.A.B.); George J. McLeod Enhancement Chair in Geology (M.G.M.). We also acknowledge the PLATINA platform of the IC2MP Institute (University of Poitiers) and the Central Analytical Facility (CAF), Stellenbosch University, for access to µCT scanners. We further thank M. Tshibalanganda, A. du Plessis, S. Le Roux and L. Coetzer for their technical assistance and support at the CAF and we gratefully acknowledge the du Plessis family at Holfontein for granting land access.

Author information

Authors and Affiliations

Authors

Contributions

C.B., S.E.G. and E.M.B. conceptualized and designed the study. C.B., A.E.A. and A.M. scanned the trace fossils and visualized the scan data. C.B. and S.E.G. performed the petrographic analysis. C.B. and A.M. produced illustrations and figures. C.B., S.E.G., M.G.M., L.A.B. and E.M.B. performed the ichnological analysis and description. C.B. wrote the first draft of the paper and all authors contributed to writing, editing and approval of the final paper.

Corresponding authors

Correspondence to
Claire Browning or Sarah E. Gabbott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Anette E. S. Högström, Renata Netto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Discussions and References.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article

Browning, C., Gabbott, S.E., Mángano, M.G. et al. Marine snow fuels an opportunistic small food web in the Late Ordovician Soom Shale Lagerstätte.
Nat Ecol Evol (2025). https://doi.org/10.1038/s41559-025-02923-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41559-025-02923-0


Source: Ecology - nature.com

Phenology modulates the top-down control of ants on bird ectoparasites: from mutualism to antagonism

Germination control by a hard seed coat: insights from a tropical legume