in

Predators can facilitate herbivory in nutrient-limited marine ecosystems


Abstract

Predators influence ecosystem functioning through consumptive and non-consumptive effects. Recent studies suggest that predators can also be an essential source of limiting nutrients in ecosystems such as coral reefs, potentially influencing prey ecology through nutrient input via their excreta. With rising commercial fishery, mesopredatory fishes are being selectively harvested from reefs. Yet, there is incomplete knowledge of the consequences of this extraction on essential ecosystem processes. Using field experiments and observations, we examined how mesopredatory fishes influence herbivory along a fishing-induced mesopredatory fish biomass gradient in the Lakshadweep Archipelago in the northern Indian Ocean. We found that mesopredatory fish excreta have greater proportion of phosphorus than nitrogen. Along the gradient, primary and secondary productivity increased, after accounting for pelagic nutrient subsidies. Further, herbivory rates increased with increasing mesopredator biomass, while prey anti-predator response remained unchanged. Our results suggest that mesopredator-induced alterations of nutrient stoichiometry stimulate primary and secondary productivity and enhance herbivory in phosphorus-limited coral reefs, particularly in systems experiencing mesopredator release following selective fishing of apex predators. Our study shifts focus from the traditional top-down role of predators, highlighting an overlooked bottom-up pathway by which mesopredators can influence ecosystem functioning. Global decline of predators could modify ecosystem processes in ways that are yet unknown, leaving them increasingly vulnerable to future disturbances.

Similar content being viewed by others

Predator mass mortality events restructure food webs through trophic decoupling

Safeguarding nutrients from coral reefs under climate change

Predator exposure early in life shapes behavioral development and individual variation in a clonal fish

Data availability

All data supporting the findings and conclusions of this article will be made publicly available in the Zenodo data repository (https://doi.org/10.5281/zenodo.15143823) upon publication. Any additional information required to analyze the data will be made available by the corresponding author upon request.

References

  1. Sheriff, M. J., Peacor, S. D., Hawlena, D. & Thaker, M. Non-consumptive predator effects on prey population size: A dearth of evidence. J. Anim. Ecol. 89, 1302–1316 (2020).

    Google Scholar 

  2. Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).

    Google Scholar 

  3. Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).

    Google Scholar 

  4. Preisser, E. L., Bolnick, D. I. & Benard, M. E. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005).

    Google Scholar 

  5. Laundre, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open. Ecol. J. 3, (2010).

  6. Brown, J. S., Laundré, J. W. & Gurung, M. The ecology of fear: optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385–399 (1999).

    Google Scholar 

  7. Laundre, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the ‘landscape of fear’ in Yellowstone National Park, U.S.A. Can. J. Zool. 79, 1401–1409 (2001).

    Google Scholar 

  8. Tebbett, S. B., Faul, S. I. & Bellwood, D. R. Quantum of fear: herbivore grazing rates not affected by reef shark presence. Mar. Environ. Res. 196, 106442 (2024).

    Google Scholar 

  9. Davis, K., Carlson, P. M., Bradley, D., Warner, R. R. & Caselle, J. E. Predation risk influences feeding rates but competition structures space use for a common Pacific Parrotfish. Oecologia 184, 139–149 (2017).

    Google Scholar 

  10. Casey, J. M. et al. A test of trophic cascade theory: fish and benthic assemblages across a predator density gradient on coral reefs. Oecologia 183, 161–175 (2017).

    Google Scholar 

  11. Allgeier, J. E., Yeager, L. A. & Layman, C. A. Consumers regulate nutrient limitation regimes and primary production in seagrass ecosystems. Ecology 94, 521–529 (2013).

    Google Scholar 

  12. Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).

    Google Scholar 

  13. Schmitz, O. J., Hawlena, D. & Trussell, G. C. Predator control of ecosystem nutrient dynamics. Ecol. Lett. 13, 1199–1209 (2010).

    Google Scholar 

  14. Allgeier, J. E. et al. Anthropogenic versus fish-derived nutrient effects on seagrass community structure and function. Ecology 99, 1792–1801 (2018).

    Google Scholar 

  15. Appoo, J., Bunbury, N., Jaquemet, S. & Graham, N. A. J. Seabird nutrient subsidies enrich mangrove ecosystems and are exported to nearby coastal habitats. iScience. 27, (2024).

  16. Appoo, J. et al. Seabird presence and seasonality influence nutrient dynamics of atoll habitats. Biotropica 56, e13354 (2024).

    Google Scholar 

  17. Benkwitt, C. E., Carr, P., Wilson, S. K. & Graham, N. A. J. Seabird diversity and biomass enhance cross-ecosystem nutrient subsidies. Proc. R. Soc. B Biol. Sci. 289, 20220195 (2022).

  18. Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 33, 341–370 (2002).

    Google Scholar 

  19. Berger, J. Fear, human shields and the redistribution of prey and predators in protected areas. Biol. Lett. 3, 620–623 (2007).

    Google Scholar 

  20. Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–476 (1998).

    Google Scholar 

  21. Ferguson, S. H., Kingsley, M. C. S. & Higdon, J. W. Killer whale (Orcinus orca) predation in a multi-prey system. Popul. Ecol. 54, 31–41 (2012).

    Google Scholar 

  22. Palmer, M. S. et al. Dynamic landscapes of fear: Understanding spatiotemporal risk. Trends Ecol. Evol. 37, 911–925 (2022).

    Google Scholar 

  23. Ripple, W. J. & Beschta, R. L. Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience. 54, 755–766 (2004).

  24. Trites, A. W., Deecke, V. B., Gregr, E. J., Ford, J. K. B. & Olesiuk, P. F. Killer Whales, whaling, and sequential megafaunal collapse in the North Pacific: A comparative analysis of the dynamics of marine mammals in Alaska and British Columbia following commercial whaling. Mar. Mamm. Sci. 23, 751–765 (2007).

    Google Scholar 

  25. Pearson, H. C. et al. Whales in the carbon cycle: can recovery remove carbon dioxide? Trends Ecol. Evol. 38, 238–249 (2023).

    Google Scholar 

  26. Archer, S. K. et al. Hot moments in spawning aggregations: implications for ecosystem-scale nutrient cycling. Coral Reefs. 34, 19–23 (2015).

    Google Scholar 

  27. Friedlander, A. M. & DeMartini, E. E. Contrasts in density, size, and biomass of reef fishes between the Northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Mar. Ecol. Prog. Ser. 230, 253–264 (2002).

    Google Scholar 

  28. Shantz, A. A., Ladd, M. C., Schrack, E. & Burkepile, D. E. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25, 2142–2152 (2015).

    Google Scholar 

  29. Singh, A., Wang, H., Morrison, W. & Weiss, H. Modeling fish biomass structure at near pristine coral reefs and degradation by fishing. J. Biol. Syst. 20, 21–36 (2012).

    Google Scholar 

  30. Ripple, W. J. & Beschta, R. L. Trophic cascades in yellowstone: the first 15 years after wolf reintroduction. Biol. Conserv. 145, 205–213 (2012).

    Google Scholar 

  31. Catano, L. B. et al. Reefscapes of fear: predation risk and reef hetero-geneity interact to shape herbivore foraging behaviour. J. Anim. Ecol. 85, 146–156 (2016).

    Google Scholar 

  32. Bauman, A. G. et al. Fear effects and group size interact to shape herbivory on coral reefs. Funct. Ecol. 35, 1985–1997 (2021).

    Google Scholar 

  33. Gangal, M. et al. Sequential overgrazing by green turtles causes archipelago-wide functional extinctions of seagrass meadows. Biol. Conserv. 260, 109195 (2021).

    Google Scholar 

  34. Benkwitt, C. E. et al. Nutrient connectivity via seabirds enhances dynamic measures of coral reef ecosystem function. PLoS Biol. 23, e3003222 (2025).

    Google Scholar 

  35. Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).

    Google Scholar 

  36. Karkarey, R., Zambre, A., Isvaran, K. & Arthur, R. Alternative reproductive tactics and inverse size-assortment in a high-density fish spawning aggregation. BMC Ecol. 17, 10 (2017).

    Google Scholar 

  37. Mourier, J. et al. Extreme inverted trophic pyramid of reef sharks supported by spawning groupers. Curr. Biol. 26, 2011–2016 (2016).

    Google Scholar 

  38. Boaden, A. E. & Kingsford, M. J. Predators drive community structure in coral reef fish assemblages. Ecosphere 6, art46 (2015).

    Google Scholar 

  39. Desbiens, A. A. et al. Revisiting the paradigm of shark-driven trophic cascades in coral reef ecosystems. Ecology 102, e03303 (2021).

    Google Scholar 

  40. Frisch, A. J. et al. Reassessing the trophic role of reef sharks as apex predators on coral reefs. Coral Reefs. 35, 459–472 (2016).

    Google Scholar 

  41. Heupel, M. R., Knip, D. M., Simpfendorfer, C. A. & Dulvy, N. K. Sizing up the ecological role of sharks as predators. Mar. Ecol. Prog. Ser. 495, 291–298 (2014).

    Google Scholar 

  42. Madin, E. M. P. et al. Multi-Trophic species interactions shape Seascape-Scale coral reef vegetation patterns. Front. Ecol. Evol. 7, (2019).

  43. Mumby, P. J. et al. Trophic cascade facilitates coral recruitment in a marine reserve. Proc. Natl. Acad. Sci. 104, 8362–8367 (2007).

    Google Scholar 

  44. Madin, E. M. P., Madin, J. S. & Booth, D. J. Landscape of fear visible from space. Sci. Rep. 1, 14 (2011).

    Google Scholar 

  45. Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006).

    Google Scholar 

  46. Littler, M. M., Littler, D. S. & Titlyanov, E. A. Comparisons of N- and P-limited productivity between high granitic Islands versus low carbonate atolls in the Seychelles archipelago: a test of the relative-dominance paradigm. Coral Reefs. 10, 199–209 (1991).

    Google Scholar 

  47. Shakya, A. W. & Allgeier, J. E. Water column contributions to coral reef productivity: overcoming challenges of context dependence. Biol. Rev. 98, 1812–1828 (2023).

    Google Scholar 

  48. Shantz, A. A., Ladd, M. C. & Burkepile, D. E. Algal nitrogen and phosphorus content drive inter- and intraspecific differences in herbivore grazing on a Caribbean reef. J. Exp. Mar. Biol. Ecol. 497, 164–171 (2017).

    Google Scholar 

  49. Bellwood, D. R. Origins and escalation of herbivory in fishes: a functional perspective. Paleobiology 29, 71–83 (2003).

    Google Scholar 

  50. Bellwood, D. R., Goatley, C. H. R., Brandl, S. J. & Bellwood, O. Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations. Proc. R. Soc. B Biol. Sci. 281, 20133046 (2014).

  51. Steneck, R. S., Bellwood, D. R. & Hay, M. E. Herbivory in the marine realm. Curr. Biol. 27, R484–R489 (2017).

    Google Scholar 

  52. Arthur, R., Done, T. J., Marsh, H. & Harriott, V. Local processes strongly influence post-bleaching benthic recovery in the Lakshadweep Islands. Coral Reefs. 25, 427–440 (2006).

    Google Scholar 

  53. Burkepile, D. E. & Hay, M. E. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc. Natl. Acad. Sci. U S A. 105, 16201–16206 (2008).

    Google Scholar 

  54. Kuffner, I. B. et al. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar. Ecol. Prog. Ser. 323, 107–117 (2006).

    Google Scholar 

  55. Pauly, D. & Palomares, M. L. Fishing down the marine food web: it is Far more pervasive than we thought. Bull. Mar. Sci. 76, (2005).

  56. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860–863 (1998).

    Google Scholar 

  57. Jaini, M., Advani, S., Shanker, K., Oommen, M. A. & Namboothri, N. History, culture, infrastructure and export markets shape fisheries and reef accessibility in India’s contrasting oceanic Islands. Environ. Conserv. 45, 41–48 (2018).

    Google Scholar 

  58. Karkarey, R., Kelkar, N., Lobo, A. S., Alcoverro, T. & Arthur, R. Long-lived groupers require structurally stable reefs in the face of repeated climate change disturbances. Coral Reefs. 33, 289–302 (2014).

    Google Scholar 

  59. Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Glob. Change Biol. 23, 2166–2178 (2017).

    Google Scholar 

  60. El-Khaled, Y. C. et al. Nitrogen fixation and denitrification activity differ between coral- and algae-dominated red sea reefs. Sci. Rep. 11, 11820 (2021).

    Google Scholar 

  61. Webb, A. E. et al. Quantifying functional consequences of habitat degradation on a Caribbean coral reef. Biogeosciences 18, 6501–6516 (2021).

    Google Scholar 

  62. Joy, A. et al. Biochemical composition of sedimentary organic matter in the coral reefs of Lakshadweep Archipelago, Indian ocean. Chem. Ecol. 35, 805–824 (2019).

    Google Scholar 

  63. Miller, M. W. & Sluka, R. D. Patterns of seagrass and sediment nutrient distribution suggest anthropogenic enrichment in Laamu Atoll, Republic of Maldives. Mar. Pollut. Bull. 38, 1152–1156 (1999).

    Google Scholar 

  64. Mohan, G. et al. Variations in seasonal phytoplankton assemblages as a response to environmental changes in the surface waters of Minicoy Island, Lakshadweep. Appl. Ecol. Environ. Sci. 9, 1024–1032 (2021).

    Google Scholar 

  65. Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 230A–2221 (1958).

    Google Scholar 

  66. Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob. Change Biol. 20, 2459–2472 (2014).

    Google Scholar 

  67. Karkarey, R. et al. Wave exposure reduces herbivory in post-disturbed reefs by filtering species composition, abundance and behaviour of key fish herbivores. Sci. Rep. 10, 9854 (2020).

    Google Scholar 

  68. Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. B. Zooplankton, planktivorous Fish, and water currents on a windward reef face: great barrier reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).

    Google Scholar 

  69. Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527e6 (2019).

    Google Scholar 

  70. Mihalitsis, M., Morais, R. A. & Bellwood, D. R. Small predators dominate fish predation in coral reef communities. PLoS Biol. 20, e3001898 (2022).

    Google Scholar 

  71. Nair, R. et al. Fishing Patterns Shaped by History, Place, and Access Leave Lasting Ecological Signatures on Coral Reef Fish Assemblages. SSRN Scholarly Paper at https://doi.org/10.2139/ssrn.5382821 (2025).

  72. Pessarrodona, A. et al. Tropicalization unlocks novel trophic pathways and enhances secondary productivity in temperate reefs. Funct. Ecol. 36, 659–673 (2022).

    Google Scholar 

  73. Blanchette, A. et al. Damselfish Stegastes nigricans increase algal growth within their territories on shallow coral reefs via enhanced nutrient supplies. J. Exp. Mar. Biol. Ecol. null, null (2019).

  74. Meyer, J. L., Schultz, E. T. & Helfman, G. S. Fish schools: an asset to corals. Science 220, 1047–1049 (1983).

    Google Scholar 

  75. Bellwood, D. R., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: A coral reef perspective. Funct. Ecol. 33, 948–961 (2019).

    Google Scholar 

  76. Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).

    Google Scholar 

  77. Buñuel, X. et al. Indirect grazing-induced mechanisms contribute to the resilience of Mediterranean seagrass meadows to sea urchin herbivory. Oikos. 2023, e09520 (2023).

  78. Kohli, M. et al. Grazing and climate change have site-dependent interactive effects on vegetation in Asian montane rangelands. J. Appl. Ecol. 58, 539–549 (2021).

    Google Scholar 

  79. Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).

    Google Scholar 

  80. Kelkar, N., Arthur, R., Marba, N. & Alcoverro, T. Green turtle herbivory dominates the fate of seagrass primary production in the lakshadweep Islands (Indian Ocean). Mar. Ecol. Prog. Ser. 485, 235–243 (2013).

    Google Scholar 

  81. Anujan, K., Ratnam, J. & Sankaran, M. Chronic browsing by an introduced mammalian herbivore in a tropical Island alters species composition and functional traits of forest understory plant communities. Biotropica 54, 1248–1258 (2022).

    Google Scholar 

  82. Coverdale, T. C. et al. Large herbivores suppress liana infestation in an African savanna. Proc. Natl. Acad. Sci. 118, e2101676118 (2021).

  83. Doherty, P. J. et al. High mortality during settlement is a population bottleneck for a tropical surgeonfish. Ecology 85, 2422–2428 (2004).

    Google Scholar 

  84. Karkarey, R., Alcoverro, T., Kumar, S. & Arthur, R. Coping with catastrophe: foraging plasticity enables a benthic predator to survive in rapidly degrading coral reefs. Anim. Behav. 131, 13–22 (2017).

    Google Scholar 

  85. Goatley, C. H. R. & Bellwood, D. R. Body size and mortality rates in coral reef fishes: a three-phase relationship. Proc. R. Soc. B Biol. Sci. 283, 20161858 (2016).

  86. Dunic, J. C. & Baum, J. K. Size structuring and allometric scaling relationships in coral reef fishes. J. Anim. Ecol. 86, 577–589 (2017).

    Google Scholar 

  87. Bauman, A. G. et al. Fear effects associated with predator presence and habitat structure interact to alter herbivory on coral reefs. Biol. Lett. 15, 20190409 (2019).

    Google Scholar 

  88. Des Roches, S., Robinson, R. R., Kinnison, M. T. & Palkovacs, E. P. The legacy of predator threat shapes prey foraging behaviour. Oecologia 198, 79–89 (2022).

    Google Scholar 

  89. Russ, G. R. Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs. 22, 63–67 (2003).

    Google Scholar 

  90. Tootell, J. S. & Steele, M. A. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources. Oecologia 181, 13–24 (2016).

    Google Scholar 

  91. Carlson, P. M., Davis, K., Warner, R. R. & Caselle, J. E. Fine-scale spatial patterns of Parrotfish herbivory are shaped by resource availability. Mar. Ecol. Prog. Ser. 577, 165–176 (2017).

    Google Scholar 

  92. Robinson, J. P. W. et al. Quantifying energy and nutrient fluxes in coral reef food webs. Trends Ecol. Evol. S0169534723003300 https://doi.org/10.1016/j.tree.2023.11.013 (2023).

  93. Benkwitt, C. E. et al. Seabirds boost coral reef resilience. Sci. Adv. 9, eadj0390 (2023).

    Google Scholar 

  94. Skinner, C. et al. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Sci. Adv. 7, eabf3792 (2021).

    Google Scholar 

  95. Catano, L. B., Gunn, B. K., Kelley, M. C. & Burkepile, D. E. Predation risk, resource quality, and reef structural complexity shape territoriality in a coral reef herbivore. PLOS ONE. 10, e0118764 (2015).

    Google Scholar 

  96. Catano, L. B., Barton, M. B., Boswell, K. M. & Burkepile, D. E. Predator identity and time of day interact to shape the risk–reward trade-off for herbivorous coral reef fishes. Oecologia 183, 763–773 (2017).

    Google Scholar 

  97. Allgeier, J. E. The ecosystem ecology of coral reefs revisited. Annu. Rev. Ecol. Evol. Syst. 55, 251–370 (2024).

    Google Scholar 

  98. Allgeier, J. E. et al. Phylogenetic conservatism drives nutrient dynamics of coral reef fishes. Nat. Commun. 12, 5432 (2021).

    Google Scholar 

  99. Papastamatiou, Y. P. et al. Dynamic energy landscapes of predators and the implications for modifying prey risk. Funct. Ecol. 00, 1–10 (2023).

    Google Scholar 

  100. Rasher, D. B., Hoey, A. S. & Hay, M. E. Cascading predator effects in a Fijian coral reef ecosystem. Sci. Rep. 7, 15684 (2017).

    Google Scholar 

  101. Rizzari, J. R., Frisch, A. J. & Connolly, S. R. How robust are estimates of coral reef shark depletion? Biol. Conserv. 176, 39–47 (2014).

    Google Scholar 

  102. Robbins, W. D., Hisano, M., Connolly, S. R. & Choat, J. H. Ongoing collapse of coral-reef shark populations. Curr. Biol. 16, 2314–2319 (2006).

    Google Scholar 

  103. Sherman, C. S. et al. Half a century of rising extinction risk of coral reef sharks and rays. Nat. Commun. 14, 15 (2023).

    Google Scholar 

  104. Rizzari, J. R., Frisch, A. J., Hoey, A. S. & McCormick M. I. Not worth the risk: apex predators suppress herbivory on coral reefs. Oikos 123, 829–836 (2014).

    Google Scholar 

  105. Divan Patel, F., Pinto, W., Dey, M., Alcoverro, T. & Arthur, R. Carbonate budgets in lakshadweep Archipelago bear the signature of local impacts and global climate disturbances. Coral Reefs. https://doi.org/10.1007/s00338-023-02374-8 (2023).

    Google Scholar 

  106. Arthur, R. Patterns and Processes of Reef Recovery and Human Resource Use in the Lakshadweep Islands, Indian Ocean (James Cook University, 2004).

  107. Abramoff, M., Magalhães, P. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2003).

    Google Scholar 

  108. Tebbett, S. B. & Bellwood, D. R. Algal turf sediments on coral reefs: what’s known and what’s next. Mar. Pollut. Bull. 149, 110542 (2019).

    Google Scholar 

  109. Tebbett, S. B. & Bellwood, D. R. Sediments ratchet-down coral reef algal turf productivity. Sci. Total Environ. 713, 136709 (2020).

    Google Scholar 

  110. Tebbett, S. B., Goatley, C. H. R. & Bellwood, D. R. Clarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and acanthurus nigrofuscus. Coral Reefs. 36, 803–813 (2017).

    Google Scholar 

  111. Tebbett, S. B., Goatley, C. H. R., Huertas, V., Mihalitsis, M. & Bellwood, D. R. A functional evaluation of feeding in the surgeonfish Ctenochaetus striatus: the role of soft tissues. R. Soc. Open. Sci. 5, 171111 (2018).

    Google Scholar 

  112. Marshell, A. & Mumby, P. J. Revisiting the functional roles of the surgeonfish acanthurus nigrofuscus and Ctenochaetus striatus. Coral Reefs. 31, 1093–1101 (2012).

    Google Scholar 

  113. Marshell, A. & Mumby, P. J. The role of surgeonfish (Acanthuridae) in maintaining algal turf biomass on coral reefs. J. Exp. Mar. Biol. Ecol. 473, 152–160 (2015).

    Google Scholar 

  114. Parravicini, V. et al. Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny. PLoS Biol. 18, e3000702 (2020).

    Google Scholar 

  115. Brown, J. S. Vigilance, patch use and habitat selection: foraging under predation risk. Evol. Ecol. Res. 1, 49–71 (1999).

    Google Scholar 

  116. Karkarey, R. et al. Do risk-prone behaviours compromise reproduction and increase vulnerability of fish aggregations exposed to fishing? Biol. Lett. 20, 20240292 (2024).

    Google Scholar 

  117. Brandl, S. J. & Bellwood, D. R. Coordinated vigilance provides evidence for direct reciprocity in coral reef fishes. Sci. Rep. 5, 14556 (2023).

    Google Scholar 

  118. Froese, R. & Pauly, D. World Wide Web electronic publication. www.fishbase.org https://www.fishbase.se/summary/citation.php (2024).

  119. Atkinson, M. J. Are coral reefs nutrients-limited? In Proceedings of 6th International Coral Reef Symposium, 1988, Vol. 1, 57–66 (1988).

  120. Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581 (2016).

    Google Scholar 

  121. Morais, R. A., Patricio-Valerio, L., Narvaez, P., Parravicini, V. & Brandl, S. J. Rethinking darwin’s coral reef paradox and the ubiquity of marine oases. Curr. Biol. 35, 3241–3250e6 (2025).

    Google Scholar 

  122. Dey, M. et al. Local environmental filtering and frequency of marine heatwaves influence decadal trends in coral composition. Divers. Distrib. 31, e70043 (2025).

    Google Scholar 

  123. Schiettekatte, N. M. D. et al. Biological trade-offs underpin coral reef ecosystem functioning. Nat. Ecol. Evol. 6, 701–708 (2022).

    Google Scholar 

  124. Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs. 39, 1221–1231 (2020).

    Google Scholar 

  125. Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish Fish. 19, 874–889 (2018).

    Google Scholar 

  126. Depczynski, M., Fulton, C. J., Marnane, M. J. & Bellwood, D. R. Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153, 111–120 (2007).

    Google Scholar 

  127. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).

  128. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  129. Brooks, M. E. et al. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Google Scholar 

  130. Fox, J. & Weisberg, S. An R Companion To Applied Regression (Sage, 2019).

  131. Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.6. http://florianhartig.github.io/DHARMa/ (2022).

  132. Breheny, P. & Burchett, W. Visualization of regression models using Visreg. R J. 9, 56–71 (2017).

    Google Scholar 

  133. Wickham, H. et al. Welcome to the tidyverse. J. Open. Source Softw. 4, 1686 (2019).

    Google Scholar 

  134. Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. Performance: an R package for assessment, comparison and testing of statistical models. J. Open. Source Softw. 6, 3139 (2021).

    Google Scholar 

Download references

Acknowledgements

We thank the Department of Environment and Forests, Union Territory of Lakshadweep, for the timely permit and support to conduct this study (F. No. 1/5/2023-E&F/1045). We thank NCBS – TIFR, Nature Conservation Foundation and Wildlife Conservation Society–India for their institutional, administrative and logistical support. We thank all our funders for the generous funding that made this work possible. We thank Siya Bhagat, Wenzel Pinto and Abdul Rauf for their assistance with data collection and Sidharth Sankaran for his help with transcribing the benthic photoquadrats. We thank Anwar Hussain, M.K. Ibrahim (Ummini) and everyone at ESMUC and LakScuba for their logistical support during the fieldwork. We are deeply grateful to the people of Bitra, Kadmat and Kavaratti for their unwavering support. We thank James Robinson and Renato Morais for their advice and assistance on the fish productivity analysis. We are grateful to Nick Graham, Casey Benkwitt, Jennifer Appoo, Mayank Kohli, Pritha Dey, Kulbhushansingh Suryawanshi, Mayuresh Gangal, Jayashree Ratnam and Siddhi Jaishankar for their critical input and feedback on different aspects and stages of the study.

Funding

Funding for this work was provided by the Department of Atomic Energy, Government of India to National Centre for Biological Sciences (Project Identification No: RTI 4006); Shri AMM Murugappa Chettiar Research Centre (MCRC), Ashraya Hasta Trust and Rohini Nilekani Philanthropies to RA; and National Geographic Society (Grant No: NGS 96905R-22) to RK. The Fisheries Society of the British Isles supported AP through a Travel Grant during his tenure at Lancaster University. AP was awarded the Infosys Travel Award by National Centre for Biological Sciences to attend and present the results of this study at the International Conference for Young Marine Researchers 2024, Bremen, Germany. The Spanish National Research Council supported TA through the Memorandum of Understanding between Centre D’Estudis Avançats de Blanes (CEAB, CSIC) and Nature Conservation Foundation (NCF).

Author information

Authors and Affiliations

Authors

Contributions

AP, RK, RA and TA conceptualized the study. AP, HT, RK, RA and TA designed the study, standardized methodology and collected data. AP, HT, RK and RA acquired funding for the study. AP and SP analyzed and summarized the data for the manuscript. AP curated and visualized the data and wrote the first draft. All authors contributed equally towards reviewing and approving the final draft.

Corresponding author

Correspondence to
Anish Paul.

Ethics declarations

Permission statement

We confirm that the required permissions to conduct field work in the atolls of Lakshadweep Archipelago were obtained from the Department of Environment and Forests, Union Territory of Lakshadweep (F. No. 1/5/2023-E&F/1045). Should you need any further documentation or information, please feel free to contact the corresponding author.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Paul, A., Thareja, H., Arthur, R. et al. Predators can facilitate herbivory in nutrient-limited marine ecosystems.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-34145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-34145-6

Keywords

  • Ecosystem functions
  • Nutrient stoichiometry
  • Bottom-up processes
  • Predator-prey interactions
  • Mesopredator release
  • Coral reefs


Source: Ecology - nature.com

Assessment of African grassland sustainability for livestock use by constructing a carrying capacity alert index

Hyperspectral proximal sensing shows clear relation between Spatial pattern of leaf traits and bacterial alpha diversity

Back to Top