Abstract
Jaguars (Panthera onca) are highly sensitive to persecution, habitat loss, and fragmentation, making the identification of suitable habitat critical for conservation planning. Using GPS telemetry data from 172 individuals across seven countries – the largest jaguar dataset to date – we developed multiscale Resource Selection Functions (RSFs) incorporating 15 environmental covariates to model habitat suitability across the species’ historic range. Jaguars selected productive habitats near water and strongly avoided human-modified landscapes, including areas with high human population density and livestock presence. The resulting habitat suitability surface showed strong predictive performance (AUC = 0.88; Boyce Index = 0.91) and correlated with known density estimates and distribution models. Jaguar Conservation Units (JCUs) and Protected Areas (PAs) contained 68.7% and 53.9% of predicted suitable habitat, respectively, while occupying only a third of the range. Non-designated lands, though comprising just 4% of the range, held nearly 10% of total suitability. The Amazon and Mayan Forests were identified as core strongholds, while ecoregion-based modelling revealed additional areas of high suitability in the Pantanal, Gran Chaco, Cerrado, and coastal Mexico. While Brazil encompassed the largest extent of highly suitable habitat, countries such as Paraguay, Argentina, and the United States gained conservation relevance under the ecoregion-stratified scenario.
Similar content being viewed by others
Impending anthropogenic threats and protected area prioritization for jaguars in the Brazilian Amazon
Reconciling biome-wide conservation of an apex carnivore with land-use economics in the increasingly threatened Pantanal wetlands
Wildfires disproportionately affected jaguars in the Pantanal
Data availability
GPS telemetry data for 117 of the 172 jaguar individuals used in this study are publicly available via Morato et al. (2018)82. The remaining 55 individuals were provided by collaborators and remain under the stewardship of their respective research groups; these data are not publicly available due to ongoing research use and data-sharing agreements. However, access to these data may be granted upon reasonable request to the corresponding authors, pending approval from the original data providers. The resulting habitat suitability surface generated by this study will be made openly available on the Zenodo repository upon manuscript acceptance (currently accessible for peer review at: https://zenodo.org/records/15824344?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjY3YTJjNzhjLTVmMzItNDFhZi04YmY1LTk0NTQzZmFkYjgyZSIsImRhdGEiOnt9LCJyYW5kb20iOiJiYTI3YTBjNDRhOGRkNjk3NWI1ZGI1OWEyMDRkYWU3NCJ9._5XjPvxWOw4azyxXv4Ww-eaoHm1FG54BexND5TEEsmBnBTahFRBpbdScnwD_8McXtH-eNHyVaqA6hoWbieufCQ).
References
Sunquist, M. E. & Sunquist, F. C. Ecological constraints on predation by large felids. Carnivore Behav. Ecol. Evol. https://doi.org/10.1007/978-1-4757-4716-4_11 (1989).
Seymour, K. L. Panthera Onca. Mammalian Species. 340, 1–9 (1989).
Quigley, H. et al. Pantera Onca. IUCN Red List. Threatened Species. 8235, 8 (2017).
Ceballos, G. et al. Beyond words: From Jaguar population trends to conservation and public policy in Mexico. PLoS ONE. 16, 1–22 (2021).
de la Torre, J. A., González-Maya, J. F., Zarza, H., Ceballos, G. & Medellín, R. A. The jaguar’s spots are darker than they appear: Assessing the global conservation status of the jaguar Panthera Onca. Oryx 52, 300–315 (2018).
Alvarenga, G. C. et al. Jaguar (Panthera onca) density and population size across protected areas and Indigenous lands in the Amazon biome, its largest stronghold. Biol. Conserv. 303, 111010 (2025).
Berzins, R. et al. Distribution and status of the jaguar in the Guiana Shield. Cat News Special Issue 16, 1–22 (2023).
Jędrzejewski, W. et al. Estimating species distribution changes due to human impacts: The 2020’s status of the jaguar in South America. CATnews Special Issue 16, 44–55 (2023).
Meyer, C. B. & Thuiller, W. Accuracy of resource selection functions across spatial scales. Divers. Distrib. 12, 288–297 (2006).
Zeller, K. A., McGarigal, K. & Whiteley, A. R. Estimating landscape resistance to movement: A review. Landsc. Ecol. 27, 777–797 (2012).
Mateo Sánchez, M. C., Cushman, S. A. & Saura, S. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian range (NW Spain). Int. J. Geogr. Inf. Sci. 28, 1531–1546 (2014).
McGarigal, K., Zeller, K. A. & Cushman, S. A. Multi-scale habitat selection modeling: Introduction to the special issue. Landsc. Ecol. 31, 1157–1160 (2016).
Cushman, S. A. et al. Simulating multi-scale optimization and variable selection in species distribution modeling. Ecol. Inf. 83, 102832 (2024).
Macdonald, D. W. et al. Multi-scale habitat modelling identifies Spatial conservation priorities for Mainland clouded leopards (Neofelis nebulosa). Divers. Distrib. 00, 1–16 (2019).
Sanderson, E. W. et al. Planning to save a species: The jaguar as a model. Conserv. Biol. 16, 58–72 (2002).
Alvarenga, G. C. et al. Multi-scale path-level analysis of jaguar habitat use in the Pantanal ecosystem. Biol. Conserv. 253, 108900 (2021).
Balbuena-Serrano, Á. et al. Connectivity of priority areas for the conservation of large carnivores in Northern Mexico. J. Nat. Conserv. 65, 126116 (2022).
Ferraz, K. M. P. M. et al. Distribuição potencial e adequabilidade ambiental dos biomas brasileiros à ocorrência da onça-pintada. in Plano Nacional para Conservação da Onça-Pintada (eds. Paula, R. C. de, Desdiez, A. & Cavalcanti., S.) 125–206 (Instituto Chico Mendes de Conservação da Biodiversidade, ICMBio, Brasília, 2013).
Petracca, L. S. et al. Robust inference on large-scale species habitat use with interview data: The status of jaguars outside protected areas in Central America. J. Appl. Ecol. 55, 723–734 (2018).
Figel, J. J., Botero-Cañola, S., Lavariega, M. C. & Luna-Krauletz, M. D. Overlooked jaguar guardians: Indigenous Territories and range-wide conservation of a cultural icon. Ambio https://doi.org/10.1007/s13280-022-01754-8 (2022).
Paviolo, A. et al. A biodiversity hotspot losing its top predator: The challenge of jaguar conservation in the Atlantic forest of South America. Sci. Rep. 6, 37147 (2016).
Sollmann, R., Torres, N. M. & Silveira, L. Jaguar conservation in Brazil: The role of protected areas. CAT News 4, 15–20 (2008).
De Angelo, C., Paviolo, A., Wiegand, T., Kanagaraj, R. & Di Bitetti, M. S. Understanding species persistence for defining conservation actions: A management landscape for jaguars in the Atlantic Forest. Biol. Conserv. 159, 422–433 (2013).
Gese, E. M., Terletzky, P. A., Cavalcanti, S. M. C. & Neale, C. M. U. Influence of behavioral state, sex, and season on resource selection by jaguars (Panthera onca): Always on the prowl? Ecosphere 9, e02341 (2018).
Craighead, K., Yacelga, M., Wan, H. Y., Vogt, R. & Cushman, S. A. Scale-dependent seasonal habitat selection by jaguars (Panthera onca) and pumas (Puma concolor) in Panama. Landsc. Ecol. 37, 129–146 (2022).
Conde, D. A. et al. Sex matters: Modeling male and female habitat differences for jaguar conservation. Biol. Conserv. 143, 1980–1988 (2010).
Colchero, F. et al. Jaguars on the move: Modeling movement to mitigate fragmentation from road expansion in the Mayan Forest. Anim. Conserv. 14, 158–166 (2011).
Rodríguez-Soto, C., Monroy-Vilchis, O. & Zarco-González, M. M. Corridors for jaguar (Panthera onca) in Mexico: Conservation strategies. J. Nat. Conserv. 21, 438–443 (2013).
Harmsen, B. J. et al. Long term monitoring of jaguars in the Cockscomb Basin Wildlife Sanctuary, Belize; implications for camera trap studies of carnivores. PLoS ONE. 12, 1–19 (2017).
Thompson, J. J. et al. Environmental and anthropogenic factors synergistically affect space use of jaguars. Curr. Biol. 31, 3457–3466e4 (2021).
Srbek-Araujo, A. C. Do female jaguars (Panthera onca Linnaeus, 1758) deliberately avoid camera traps? Mammalian Biol. 88, 26–30 (2018).
Cerqueira, R. C., de Rivera, O. R., Jaeger, J. A. G. & Grilo, C. Direct and indirect effects of roads on space use by jaguars in Brazil. Sci. Rep. 11, 1–9 (2021).
Alegre, V. B. et al. The effect of anthropogenic features on the habitat selection of a large carnivore is conditional on sex and circadian period, suggesting a landscape of coexistence. J. Nat. Conserv. 73, 126412 (2023).
Jędrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution – Application to the Jaguar (Panthera onca). PLoS ONE. 13, 1–25 (2018).
Tôrres, N. M. et al. Can species distribution modelling provide estimates of population densities? A case study with jaguars in the neotropics. Divers. Distrib. 18, 615–627 (2012).
Wasserman, T. N., Cushman, S. A., Shirk, A. S., Landguth, E. L. & Littell, J. S. Simulating the effects of climate change on population connectivity of American Marten (Martes americana) in the Northern Rocky Mountains, USA. Landsc. Ecol. 27, 211–225 (2012).
Wan, H. Y. et al. Meta-replication reveals nonstationarity in multi-scale habitat selection of Mexican spotted Owl. Condor: Ornithological Appl. 119, 641–658 (2017).
Morato, R. G. et al. Resource selection in an apex predator and variation in response to local landscape characteristics. Biol. Conserv. 228, 233–240 (2018).
Villalva, P., Palomares, F. & Zanin, M. Effect of uneven tolerance to human disturbance on dominance interactions of top predators. Conserv. Biol. 39, 1–10 (2024).
Eriksson, C. E. et al. Extensive aquatic subsidies lead to territorial breakdown and high density of an apex predator. Ecology (2021). https://doi.org/10.1002/ecy.3543
Azevedo, F. C. C. & Verdade, L. M. Predator-prey interactions: Jaguar predation on Caiman in a floodplain forest. J. Zool. 286, 200–207 (2012).
Schaller, G. B. & Crawshaw, P. G. Movement patterns of jaguar. Biotropica 12, 161–168 (1980).
Khamila, C. N. et al. There is a trade-off between forest productivity and animal biodiversity in Europe. Biodivers. Conserv. 32, 1879–1899 (2023).
Peña-Mondragón, J. L., Castillo, A., Hoogesteijn, A. & Martínez-Meyer, E. Livestock predation by jaguars Panthera onca in South-Eastern Mexico: The role of local peoples’ practices. Oryx 51, 254–262 (2016).
Stryker, J. A. Thermoregulatory Behaviour Assessment and Thermal Imaging of Large Felids (The University of Guelph, 2016).
Rabinowitz, A. & Zeller, K. A. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera Onca. Biol. Conserv. 143, 939–945 (2010).
Astete, S. et al. Living in extreme environments: Modeling habitat suitability for jaguars, pumas, and their prey in a semiarid habitat. J. Mammal. 98, 464–474 (2017).
Morato, R. G., Ferraz, K. M. P. M. D. B., De Paula, R. C. & Campos, C. B. De. Identification of priority conservation areas and potential corridors for jaguars in the Caatinga Biome, Brazil. PLoS ONE 9, e92950 (2014).
de la Torre, J. A., Núñez, J. M. & Medellín, R. A. Habitat availability and connectivity for jaguars (Panthera onca) in the Southern Mayan forest: Conservation priorities for a fragmented landscape. Biol. Conserv. 206, 270–282 (2017).
Ramirez-Reyes, C., Bateman, B. L. & Radeloff, V. C. Effects of habitat suitability and minimum patch size thresholds on the assessment of landscape connectivity for jaguars in the Sierra Gorda, Mexico. Biol. Conserv. 204, 296–305 (2016).
Penjor, U., Kaszta, Ż., Macdonald, D. W. & Cushman, S. A. Prioritizing areas for conservation outside the existing protected area network in Bhutan: The use of multi-species, multi-scale habitat suitability models. Landsc. Ecol. 36, 1281–1309 (2021).
Chiaverini, L. et al. Multi-scale, multivariate community models improve designation of biodiversity hotspots in the Sunda Islands. Anim. Conserv. 25, 660–679 (2022).
Macdonald, D. W. et al. Predicting biodiversity richness in rapidly changing landscapes: Climate, low human pressure or protection as salvation? Biodivers. Conserv. 29, 4035–4057 (2020).
Zeller, K. A., Vickers, T. W., Ernest, H. B. & Boyce, W. M. Multi-level, multi-scale resource selection functions and resistance surfaces for conservation planning: Pumas as a case study. PLoS ONE. 12, e0179570 (2017).
Calderón, A. P. et al. Occupancy models reveal potential of conservation prioritization for Central American jaguars. Anim. Conserv. https://doi.org/10.1111/acv.12772 (2022).
Redo, D. J., Grau, H. R., Aide, T. M. & Clark, M. L. Asymmetric forest transition driven by the interaction of socioeconomic development and environmental heterogeneity in Central America. Proc. Natl. Acad. Sci. U S A. 109, 8839–8844 (2012).
Wultsch, C. et al. Genetic diversity and population structure of Mesoamerican jaguars (Panthera onca): Implications for conservation and management. PLoS ONE. 11, 1–25 (2016).
Meyer, N. F. V. et al. Effectiveness of Panama as an intercontinental land bridge for large mammals. Conserv. Biol. 0, 1–13 (2019).
Motlagh, J. A. Terrifying Journey Through the World’s Most Dangerous Jungle,. Outside Online (2016).
Obinna, D. N. Camino de La muerte: Crossing the Darién gap and migration in the Americas. Migr. Dev. 13, 7–24 (2024).
Jędrzejewski, W. et al. Jaguars (Panthera onca) in the Llanos of Colombia and Venezuela: Estimating distribution and population size by combining different modeling approaches. in Neotropical Mammals (eds Mandujano, S., Naranjo, E. J. & Ponce, A. G. P. et al.) (Springer, Cham, 2023). https://doi.org/10.1007/978-3-031-39566-6_9
Hyde, M. et al. Tourism-supported working lands sustain a growing jaguar population in the Colombian Llanos. Sci. Rep. 13, 1–11 (2023).
Boron, V. et al. Jaguar densities across human-dominated landscapes in Colombia: The contribution of unprotected areas to long term conservation. PLoS ONE. 11, e0153973 (2016).
Seidl, A. F., De Silva, J. D. S. V. & Moraes, A. S. Cattle ranching and deforestation in the Brazilian Pantanal. Ecol. Econ. 36, 413–425 (2001).
Soisalo, M. K. & Cavalcanti, S. M. C. Estimating the density of a jaguar population in the Brazilian Pantanal using camera-traps and capture-recapture sampling in combination with GPS radio-telemetry. Biol. Conserv. 129, 487–496 (2006).
Devlin, A. L. et al. Drivers of large carnivore density in non-hunted, multi-use landscapes. Conserv. Sci. Pract. 5, 1–13 (2023).
de Barros, A. E. et al. Wildfires disproportionately affected jaguars in the Pantanal. Commun. Biol. 5, 1–12 (2022).
Santos, F. C., Chaves, F. M., Negri, R. G. & Massi, K. G. Fires in Pantanal: The link to agriculture conversions in Cerrado, and hydrological changes. Wetlands 44, 1–11 (2024).
Romero-Muñoz, A. et al. Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Divers. Distrib. 25, 176–190 (2019).
Thompson, J. J. et al. Jaguar (Panthera onca) population density and landscape connectivity in a deforestation hotspot: The Paraguayan Dry Chaco as a case study. Perspect. Ecol. Conserv. https://doi.org/10.1016/j.pecon.2022.09.001 (2022).
Quiroga, V. A., Boaglio, G. I., Noss, A. J. & Di Bitetti, M. S. Critical population status of the jaguar Panthera onca in the Argentine Chaco: Camera-trap surveys suggest recent collapse and imminent regional extinction. Oryx 48, 141–148 (2014).
Haag, T. et al. The effect of habitat fragmentation on the genetic structure of a top predator: Loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca). Mol. Ecol. 19, 4906–4921 (2010).
Roques, S. et al. Effects of habitat deterioration on the population genetics and conservation of the jaguar. Conserv. Genet. 17, 125–139 (2016).
de Paula, R. C., Campos, C. B. & Oliveira, T. G. Red List assessment for the jaguar in the Caatinga biome. Cat News Special Issue 7, 19–24 (2012).
Portugal, M. P., Morato, R. G., Ferraz, K. M. P. M. D. B., Rodrigues, F. H. G. & Jacobi, C. M. Priority areas for jaguar Panthera onca conservation in the Cerrado. Oryx 54, 854–865 (2019).
Moraes, E. A. Jr. The status of the jaguar in the Cerrado. CATnews Special Issue 7, 25–28 (2012).
Soterroni, A. C. et al. Expanding the soy moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).
Segura-Garcia, C. et al. The fire regimes of the Cerrado and their changes through time. Philos. Trans. R. Soc. B: Biol. Sci. 380, 20230460 (2025).
Pompeu, J., Assis, T. O. & Ometto, J. P. Landscape changes in the cerrado: Challenges of land clearing, fragmentation and land tenure for biological conservation. Sci. Total Environ. 906, 167581 (2024).
Pessôa, A. C. M. et al. Protected areas are effective on curbing fires in the Amazon. Ecol. Econ. 214, 107983 (2023).
Qin, Y. et al. Forest conservation in Indigenous Territories and protected areas in the Brazilian Amazon. Nat. Sustain. 6, 295–305 (2023).
Moutinho, P. & Azevedo-Ramos, C. Untitled public forestlands threat Amazon conservation. Nat. Commun. 14, 1152 (2023).
Morán-López, R., Cortés Gañán, E., Uceda Tolosa, O. & Sánchez Guzmán, J. M. The umbrella effect of natura 2000 Annex species spreads over multiple taxonomic groups, conservation attributes and organizational levels. Anim. Conserv. 23, 407–419 (2020).
Zanin, M. et al. The differential genetic signatures related to climatic landscapes for jaguars and pumas on a continental scale. Integr. Zool. 16, 2–18 (2021).
Morato, R. G. et al. Jaguar movement database: A GPS-based movement dataset of an apex predator in the Neotropics. Ecology 99, 1691 (2018).
Rondinini, C. & Boitani, L. Mind the map: Trips and pitfalls in making and reading maps of carnivore distribution. in Carnivore Ecology and Conservation: A Handbook of Techniques (eds Boitani, L. & Powell, R. A.) 506 (Oxford University Press, New York, USA, (2012).
Crego, R. D., Stabach, J. A. & Connette, G. Implementation of species distribution models in Google Earth Engine. Divers. Distrib. 28, 904–916 (2022).
Zeller, K. A. et al. Sensitivity of landscape resistance estimates based on point selection functions to scale and behavioral state: Pumas as a case study. Landsc. Ecol. 29, 541–557 (2014).
Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35, 213–226 (2021).
Bowman, J., Jaeger, J. A. G. & Fahrig, L. Dispersal distance of mammals is proportional to home range size. Ecology 83, 2049–2055 (2002).
Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71 (1980).
Rodríguez-Soto, C. et al. Predicting potential distribution of the jaguar (Panthera onca) in Mexico: Identification of priority areas for conservation. Divers. Distrib. 17, 350–361 (2011).
Searle, C. E. et al. Random forest modelling of multi-scale, multi-species habitat associations within KAZA transfrontier conservation area using spoor data. J. Appl. Ecol. 59, 2346–2359 (2022).
Ávila–Nájera, D. M., Chávez, C., Pérez–elizalde, S., Palacios–pérez, J. & Tigar, B. Coexistence of jaguars (Panthera onca) and pumas (Puma concolor) in a tropical forest in South–Eastern Mexico. Anim. Biodivers. Conserv. 43, 55–66 (2020).
Schoen, J. M., DeFries, R. & Cushman, S. Open-source, environmentally dynamic machine learning models demonstrate behavior-dependent utilization of mixed-use landscapes by jaguars (Panthera onca). Biol. Conserv. 302, 110978 (2025).
Bogoni, J. A., Peres, C. A. & Ferraz, K. M. P. M. B. Extent, intensity and drivers of mammal defaunation: A continental-scale analysis across the neotropics. Sci. Rep. 10, 1–16 (2020).
Gilbert, M. et al. Global cattle distribution in 2010 (5 minutes of arc). Harv. Dataverse https://doi.org/10.7910/DVN/GIVQ75 (2018).
Gilbert, M. et al. Global goats distribution in 2010 (5 minutes of arc). Harv. Dataverse https://doi.org/10.7910/DVN/OCPH42 (2018).
Gilbert, M. et al. Global sheep distribution in 2010 (5 minutes of arc). Harv. Dataverse https://doi.org/10.7910/DVN/BLWPZN (2018).
Montalvo, V. H., Sáenz-Bolaños, C., Carrillo, E. & Fuller, T. K. A review of environmental and anthropogenic variables used to model jaguar occurrence. Neotropical Biology Conserv. 18, 31–51 (2023).
Sørensen, R., Zinko, U. & Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 10, 101–112 (2006).
Jenness, J. Topographic Position Index (tpi_jen.avx) Extension for ArcView 3.x, v.1.-3a. Preprint at (2006). http://www.jennessent.com/arcview/tpi.htm
Amatulli, G., McInerney, D., Sethi, T., Strobl, P. & Domisch, S. Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers. Sci. Data. 7, 1–18 (2020).
Weill, R. R. & Brady, N. C. The Nature and Properties of Soils (Pearson, 2016).
Cushman, S. A., Elliot, N. B., Macdonald, D. W. & Loveridge, A. J. A multi-scale assessment of population connectivity in African lions (Panthera leo) in response to landscape change. Landsc. Ecol. 31, 1337–1353 (2016).
Macdonald, D. W. et al. Multi-scale habitat selection modeling identifies threats and conservation opportunities for the Sunda clouded Leopard (Neofelis diardi). Biol. Conserv. 227, 92–103 (2018).
R Core Team. R: A language and environment for statistical computing. Preprint at. (2018).
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://Preprint at (2016). http://www.qgis.org/en/site/
Gorelick, N. et al. Google Earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
Morato, R. G. et al. Space use and movement of a Neotropical top predator: The endangered jaguar. PLoS ONE. 11, 1–17 (2016).
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6
De Jay, N. et al. mRMRe: An R package for parallelized mRMR ensemble feature selection. Bioinformatics 29, 2365–2368 (2013).
Fletcher, R. & Fortin, M. J. Spatial ecology and conservation modeling. Springer Nat. Switz. https://doi.org/10.1007/978-3-030-01989-1 (2018).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Hijmans, R. terra: Spatial Data Analysis. Preprint at (2024).
Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Modell. 157, 281–300 (2002).
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Modell. 199, 142–152 (2006).
Nagy-Reis, M. et al. NEOTROPICAL CARNIVORES: A data set on carnivore distribution in the Neotropics. Ecology 101, 1–5 (2020).
Robin, X. et al. pROC: An open-source package for R and S + to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).
MMAMC, M. do M. A. e M. C. Cadastro Nacional de Florestas Públicas (CNFP). (2022).
Nijhawan, S. Conservation units, priority areas and dispersal corridors for jaguars in Brazil. Cat News Special Issue 7, 43–47 (2012).
UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (WDPA). (UNEP-WCMC and IUCN www.protectedplanet.net., 2022).
Griffith, D. M., Nivelo-Villavicencio, C., Rodas, F., Puglla, B. & Cisneros, R. New altitudinal records of Panthera onca (Carnivora: Felidae) in the Andean region of Ecuador. Mammalia 86, 190–195 (2021).
Zeller, K. Jaguars in the New Millennium Data Set Update: The State of the Jaguar in 2006 1–77 (Wildlife Conservation Society, Bronx, 2007).
Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baurch-Murdo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Glob Chang. Biol. 00, 1–16 (2019).
Sorichetta, A. et al. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Sci. Data https://doi.org/10.1038/sdata.2015.45 (2015).
Li, X., Zhou, Y., Zhao, M. & Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data. 7, 1–9 (2020).
Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).
Giglio, L., Justice, C., Boschetti, L. & Roy, D. MCD64A1 MODIS/Terra + Aqua burned area monthly L3 global 500m SIN grid V006. NASA EOSDIS Land. Processes DAAC. https://doi.org/10.5067/MODIS/MCD64A1.006 (2015).
Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-Day L3 global 250m SIN grid V006. NASA EOSDIS Land. Processes Distrib. Act. Archive Cent. https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).
Running, S., Mu, Q. & Zhao, M. MOD17A2H MODIS/Terra gross primary productivity 8-Day L4 global 500m SIN grid V006. NASA EOSDIS Land. Processes DAAC. https://doi.org/10.5067/MODIS/MOD17A2H.006 (2015).
DiMiceli, C. et al. MOD44B MODIS/Terra vegetation continuous fields yearly L3 global 250m SIN grid V006. (2015). https://doi.org/10.5067/MODIS/MOD44B.006
Potapov, P. et al. Mapping and monitoring global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2020.112165 (2020).
Wan, Z., Hook, S. & Hulley, G. MODIS/Terra land surface Temperature/Emissivity 8-Day L3 global 1km SIN grid V061. NASA EOSDIS Land. Processes DAAC. https://doi.org/10.5067/MODIS/MOD11A2.061 (2021).
Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L. & Karger, D. CHELSA-BIOCLIM + A novel set of global climate-related predictors at kilometre-resolution. EnviDat https://doi.org/10.16904/envidat.332 (2022).
Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe Version 4. CGIAR-CSI SRTM 90m (2008). https://srtm.csi.cgiar.org
Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).
Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).
Acknowledgements
GCA doctorate is supported by a grant to David Macdonald at WildCRU from the Robertson Foundation. We are extremely grateful to the Alianza WWF-Fundación, Telmex/Telcel, the Universidad Nacional Autónoma de México (project DGAPA, PAPIT IN208017), and Amigos de Calakmul A.C. for their financial support. We extend special thanks to the ejidos Caobas and Laguna Om, as well as the Calakmul Biosphere Reserve, for granting permission to conduct our research on their lands. The Instituto Homem Pantaneiro is grateful to ICMBio/CENAP, Panthera Brasil, and Onçafari for their valuable partnerships. The Mamirauá Institute thanks CNPq for the scholarships, and the communities of Mamirauá Sustainable Development Reserve for their essential field support – especially Lázaro Pinto dos Santos (Lazinho) and Railgler Gomes dos Santos (Raí), in memoriam. ACSA thanks the Espírito Santo Research and Innovation Support Foundation (FAPES) for funding the project (FAPES 510/2016), as well as for the Capixaba Researcher Fellowship (FAPES 404/2022). SAC thanks NASA for the project grant 80NSSC25K7244. All figures were created by GCA using QGIS v3.36.0 (https://qgis.org). Editorial assistance was provided by ChatGPT (OpenAI) to improve clarity and language use.
Funding
GCA doctorate is supported by a grant to David Macdonald at WildCRU from the Robertson Foundation. ACSA was supported by the Espírito Santo Research and Innovation Support Foundation (FAPES) for funding the project (FAPES 510/2016), as well as for the Capixaba Researcher Fellowship (FAPES 404/2022). SAC was supported by a NASA project grant number 80NSSC25K7244.
Author information
Authors and Affiliations
Contributions
Guilherme Costa Alvarenga: Conceptualization, Investigation, Data curation, Methodology, Formal analysis, Validation, Visualization, Writing – original draft, Writing – review & editing. Caroline C. Sartor: Methodology, Formal analysis, Writing – review & editing. Samuel (A) Cushman: Conceptualization, Methodology, Formal analysis, Writing – review & editing, Supervision, Project administration. Alexandra Zimmermann: Writing – review & editing. Ana Carolina Srbek-Araujo: Investigation, Resources, Writing – review & editing. Ana Cristina Mendes-Oliveira: Investigation, Resources, Writing – review & editing. Bart Harmsen: Investigation, Resources, Writing – review & editing. Carlos De Angelo: Investigation, Resources, Writing – review & editing. Carolina Franco Esteves: Investigation, Resources, Writing – review & editing. Claudia (B) de Campos: Investigation, Resources, Writing – review & editing. Daiana Jeronimo Polli: Investigation, Resources, Writing – review & editing. Diego F. Passos Viana: Investigation, Resources, Writing – review & editing. Diogo Maia Gräbin: Investigation, Resources, Writing – review & editing. Emiliano Donadio: Investigation, Resources, Writing – review & editing. Emiliano E. Ramalho: Investigation, Resources, Writing – review & editing. Esteban Payán: Investigation, Resources, Writing – review & editing. Fernando (C) C. Azevedo: Investigation, Resources, Writing – review & editing. Francisco Palomares: Investigation, Resources, Writing – review & editing. George V. N. Powell: Investigation, Resources, Writing – review & editing. Gerardo Ceballos: Investigation, Resources, Writing – review & editing. Grasiela Porfirio: Investigation, Resources, Writing – review & editing. Heliot Zarza: Investigation, Resources, Writing – review & editing. Ivonne Cassaigne: Investigation, Resources, Writing – review & editing. Juliano A. Bogoni: Investigation, Resources, Writing – review & editing. Leonardo Sena: Investigation, Resources, Writing – review & editing. Louise Maranhão: Investigation, Resources, Writing – review & editing. Marcos Roberto Monteiro de Brito: Investigation, Resources, Writing – review & editing. Mathias W. Tobler: Investigation, Resources, Writing – review & editing. Øystein Wiig: Investigation, Resources, Writing – review & editing. Rebecca J. Foster: Investigation, Resources, Writing – review & editing. Ricardo Sampaio: Investigation, Resources, Writing – review & editing. Rodrigo Nuñez: Investigation, Resources, Writing – review & editing. Ronaldo G. Morato: Investigation, Resources, Writing – review & editing. Valeria Boron: Investigation, Resources, Writing – review & editing. Wener Hugo Arruda Moreno: Investigation, Resources, Writing – review & editing. Yadvinder Malhi: Writing – review & editing. David W. Macdonald: Resources, Writing – review & editing, Funding acquisition. Zaneta Kaszta: Conceptualization, Methodology, Formal analysis, Writing – review & editing, Supervision, Project administration.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary Material 1
Supplementary Material 2
Supplementary Material 1
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Reprints and permissions
About this article
Cite this article
Alvarenga, G.C., Sartor, C.C., Cushman, S.A. et al. Range-wide assessment of habitat suitability for jaguars using multiscale species distribution modelling.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-30512-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-30512-5
Keywords
- Habitat suitability
- Indigenous lands
- Jaguar conservation units
- Multiscale modelling
- Panthera onca
- Protected areas
Source: Ecology - nature.com
