Abstract
The family Pieridae (Lepidoptera: Pieridae) is known for its ecological and conservation significance; however, little is known about its spatial distribution pattern and climate vulnerability in mainland China, complicating the formulation of effective conservation strategies. Pierinae and Coliadinae are widely distributed across most parts of the research zone, especially in the southern regions. Conversely, Dismorphiinae is mainly distributed in the west-central and northeastern parts. Pierinae and Coliadinae flourished over a wider range of elevations in open environments with warmer and more humid habitats, whereas Dismorphiinae is restricted to a narrow elevation range in forested areas with cooler and drier habitats. Therefore, it was necessary to study their distribution patterns separately. The MaxEnt model was applied to analyze the influence of bioclimatic variables on their distribution throughout three historical eras: the Last Interglacial (LIG), the Last Glacial Maximum (LGM), and the Current (1970–2000). Pierinae and Coliadinae showed a uniform increase in overall highly suitable habitats, while Dismorphiinae showed an initial increase and then a decrease. Due to global warming, all three subfamilies might experience contraction in highly suitable habitats. Most Pieridae species are projected to experience shrinkage in highly suitable habitats, leading to decreased species diversity. These findings highlight divergent historical distribution patterns and habitat preferences among Pieridae subfamilies, yet project a shared vulnerability to future habitat contraction under climate warming.
Data availability
The data presented in this study are available on request from both corresponding authors.
References
Wang, W. L. et al. Butterfly Conservation in China: From Science to Action. Insects 11, 661. https://doi.org/10.3390/insects11100661 (2020).
Thomas, J. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. Trans. R Soc. B. 360, 339–357. https://doi.org/10.1098/rstb.2004.1585 (2005).
Yu, X. T. et al. Species richness of papilionidae butterflies (Lepidoptera: Papilionoidea) in the Hengduan mountains and its future shifts under climate change. Insects 14, 259. https://doi.org/10.3390/insects14030259 (2023).
Min, W. et al. Species diversity of butterflies in Shimentai nature Reserve, Guangdong. Biodiv Sci. 11, 441–453. https://doi.org/10.17520/biods.2003052 (2003).
Pollard, E. Temperature, rainfall and butterfly numbers. J. Appl. Ecol. 25, 819–828. https://doi.org/10.2307/2403748 (1988).
Svancara, L., Abatzoglou, J. & Waterbury, B. Modeling current and future potential distributions of milkweeds and the monarch butterfly in Idaho. Front. ecol. evol. 7, 168. https://doi.org/10.3389/fevo.2019.00168 (2019).
Minter, M. et al. Past, current, and potential future distributions of unique genetic diversity in a cold-adapted mountain butterfly. Ecol. Evol. 10, 11155–11168. https://doi.org/10.1002/ece3.6755 (2020).
Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Chang. Biol. 13, 1860–1872. (2007).
Gibbs, M., Wiklund, C. & Van Dyck, H. Temperature, rainfall and butterfly morphology: does life history theory match the observed pattern? Ecography 34, 336–344. https://doi.org/10.1111/j.1600-0587.2010.06573.x (2010).
Bartonova, A. et al. Range dynamics of palaearctic steppe species under glacial cycles: the phylogeography of Proterebia Afra (Lepidoptera: nymphalidae: Satyrinae). Biol. J. Linn. Soc. 125, 867–884. https://doi.org/10.1093/biolinnean/bly136 (2018).
Taberlet, P., Fumagalli, L., Wust-Saucy, A. G. & Cosson, J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464. https://doi.org/10.1046/j.1365-294x.1998.00289.x (2002).
Schoville, S., Stuckey, M. & Roderick, G. Pleistocene origin and population history of a neoendemic alpine butterfly. Mol. Ecol. 20, 1233–1247. https://doi.org/10.1111/j.1365-294X.2011.05003.x (2011).
Sherpa, S. et al. Population decline at distribution margins: assessing extinction risk in the last glacial relictual but still functional metapopulation of a European butterfly. Divers. Distrib. 28, 271–290. https://doi.org/10.1111/ddi.13460 (2022).
Kebaili, C., Sherpa, S., Rioux, D. & Després, L. Demographic inferences and Climatic niche modelling shed light on the evolutionary history of the emblematic cold-adapted Apollo butterfly at regional scale. Mol. Ecol. 31, 448–466. https://doi.org/10.1111/mec.16244 (2021).
Kumar, P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using maxent modelling: limitations and challenges. Biodivers. Conserv. 21, 1251–1266. https://doi.org/10.1007/s10531-012-0279-1 (2012).
Wu, C. S. & Hsu, Y. F. Butterflies of ChinaVol. 41442–2036 (The Straits Publishing & Distributing Group, 2017).
Simon, L. Encyclopedia of Biodiversity. Vol. 1, 943Princeton university, Academic Press, (2013).
Powell, J. A., Resh, V. H. & Cardé, R. T. Lepidoptera. In Encyclopedia of Insects 2nd edn (Academic, 2009).
Vane-Wright, D. & de Jong, R. The butterflies of sulawesi: annotated checklist for a critical Island fauna. Zool. Verh Leiden. 343, 3–267 (2003).
Ding, C. & Zhang, Y. L. Phylogenetic relationships of Pieridae (Lepidoptera: Papilionoidea) in China based on seven gene fragments: phylogenetic relationships of Pieridae. Entomol. Sci. 20, 15–23. https://doi.org/10.1111/ens.12214 (2016).
Opler, P. A. A Field Guide To Western Butterflies 2nd edn (Houghton Mifflin Company, 1998).
Brock, J. P. & Kaufman, K. Kaufman Field Guide To Butterflies of North America (Houghton Mifflin Company, 2003).
Shapiro, A. M. The biology and zoogeography of the legume-feeding Patagonian-Fuegian white butterfly Tatochila Theodice (Lepidoptera: Pieridae). J. N. Y. Entomol. Soc. 251–260 (1991).
Shapiro, A. M., Forister, M. L. & Fordyce, J. A. Extreme high-altitude Asian and Andean Pierid butterflies are not each others’ closest relatives. Arct. Antarct. Alp. Res. 39, 137–142 (2007).
Shapiro, A. M. Behavioral and ecological observations of Peruvian High-Andean Pierid butterflies (Lepidoptera). Stud. Neotrop. Fauna Environ. 20, 1–13. https://doi.org/10.1080/01650528509360 (1985).
Shapiro, A. M. Developmental and phenotypic responses to photoperiod and temperature in an Equatorial montane butterfly, Tatochila xanthodice (Lepidoptera: Pieridae). Biotropica 297–301. https://doi.org/10.2307/2387682 (1978).
Tshikolovets, V. V., Yakovlev, R. V. & Bálint, Z. The Butterflies of Mongolia (Tshikolovets, 2009).
Tshikolovets, V. V., Yakovlev, R. V. & Kosterin, O. E. The Butterflies of Altai, Sayans and Tuva (Tshikolovets, 2009). (South Siberia.
Laiho, J. & Ståhls, G. DNA barcodes identify central Asian Colias butterflies (Lepidoptera, Pieridae). Zookeys 30, 175–196. https://doi.org/10.3897/zookeys.365.5879 (2013).
Yata, O. Butterflies of the South East Asian IslandsVol. 3 (Plapac Co. Ltd., 1985).
Leong, J. V. et al. Around the world in 26 million years: diversification and biogeography of Pantropical Grass-Yellow Eurema butterflies (Pieridae: Coliadinae). J. Biogeogr. 52, e15107. https://doi.org/10.1111/jbi.15107 (2025).
Lukhtanov, V. A. Karyotype evolution and systematics of higher taxa of Pieridae (Lepidoptera) of the world. Ent Obozr. 70, 619–636 (1991).
Lamas, G. Twenty-five new Neotropical dismorphiinae (Lepidoptera-Pieridae). Rev. Peru Entomol. 44, 17–36 (2004).
Soberón, J. M., Llorente, J. B. & Oñate, L. The use of specimen-label databases for conservation purposes: an example using Mexican papilionid and Pierid butterflies. Biodivers. Conserv. 9, 1441–1466. https://doi.org/10.1023/A:1008987010383 (2000).
Zheng, P. China’s Geography142 (China Intercontinental, 2010).
Machine, W. Regions of Chinese food-styles/flavors of cooking. (2024). https://web.archive.org/web/20090416203009/http://www.kas.ku.edu:80/service-learning/projects/chinese_food/regional_cuisine. html.
Zhu, H. The tropical forests of Southern China and conservation of biodiversity. Bot. Rev. 83, 87–105. https://doi.org/10.1007/s12229-017-9177-2 (2017).
Wang, Y. et al. Macro-evolutionary dynamics dominated by dispersal promote the formation of regional biodiversity hotspot‐insights from hawkmoths (Lepidoptera: Sphingidae) in South China. Divers. Distrib. 31, e13916. https://doi.org/10.1111/ddi.13916 (2025).
Forti, L. R. & Szabo, J. K. The iNaturalist platform as a source of data to study amphibians in Brazil. Acad. Bras. Ciênc. 95, e20220828. https://doi.org/10.1590/0001-3765202320220828 (2023).
Su, J. et al. The distribution pattern and species richness of scorpionflies (Mecoptera: Panorpidae). Insects 14, 332. https://doi.org/10.3390/insects14040332 (2023).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km Spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. https://doi.org/10.1002/joc.5086 (2017).
Chen, Y., Guo, D., Cao, W. & Li, Y. Changes in net primary productivity and factor detection in china’s yellow river basin from 2000 to 2019. Remote Sens. 15, 2798. https://doi.org/10.3390/rs15112798 (2023).
Bai, W. et al. Analysis of Spatial and Temporal variation of vegetation NPP in Daning river basin and its driving forces. Int. J. Remote Sens. 44, 6194–6218. (2023).
Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).
Moss, R. et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies: IPCC Expert Meeting Report (Noordwijkerhout). http://www.ipcc.ch/pdf/supporting-material/expert-meeting-ts-scenarios.pdf.IP (2008) .
John, W. et al. Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel (University of Maryland, Joint Global Change Research Institute, 2009).
Vilela, B., Villalobos, F. & LetsR A new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234. https://doi.org/10.1111/2041-210X.12401 (2015).
Santana, P. A. Jr, Kumar, L., Da Silva, R. S., Pereira, J. L. & Picanço, M. C. Assessing the impact of climate change on the worldwide distribution of Dalbulus Maidis (DeLong) using maxent. Pest Manag. Sci. 75, 2706–2715. https://doi.org/10.1002/ps.5379 (2019).
Wei, J., Peng, L., He, Z., Lu, Y. & Wang, F. Potential distribution of two invasive pineapple pests under climate change. Pest Manag. Sci. 76, 1652–1663. https://doi.org/10.1002/ps.5684 (2020).
Warren, D. L., Wright, A. N., Seifert, S. N. & Shaffer, H. B. Incorporating model complexity and Spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 20, 334–343. https://doi.org/10.1111/ddi.12160 (2014).
Zhou, B. J., Ma, C. L., Gao, C., Han, D. N. & Chai, Y. Impacts of climate change on species distribution patterns of Polyspora sweet in China. Ecol. Evol. 12, e9516. https://doi.org/10.1002/ece3.9516 (2022).
Yang, X., Kushwaha, S., Saran, S., Xu, J. & Roy, P. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia Adhatoda L. in lesser Himalayan foothills. Ecol. Eng. 51, 83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004 (2013).
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x (2006).
Hijmans, R. J. & Elith, J. Spatial distribution models. Vol. 10, (2019).
Zhang, X. F., Nizamani, M. M., Jiang, C., Fang, F. Z. & Zhao, K. K. Potential planting regions of Pterocarpus Santalinus (Fabaceae) under current and future climate in China based on maxent modeling. Ecol. Evol. 14, e11409. https://doi.org/10.1002/ece3.11409 (2024).
Lu, S. et al. Patterns of tree species richness in Southwest China. Environ. Monit. Assess. 193, 97. https://doi.org/10.1007/s10661-021-08872-y (2021).
Xie, D. et al. Diversity of higher plants in China. J. Syst. Evol. 59, 1111–1123. https://doi.org/10.1111/jse.12758 (2021).
Ômura, H. Plant secondary metabolites in host selection of butterfly. In Chemical Ecology of Insects. 3–27 (CRC, Boca Raton, Florida, (2018).
Castro-Gerardino, D. J. & Llorente-Bousquets, J. Comparative exploration of antennae in Pseudopontia, and antennal clubs of the tribes leptideini and dismorphiini (Lepidoptera: Pieridae). Zootaxa 4347, 401–445 (2017).
Scott, J. A. The Butterflies of North America: A Natural History and Field Guide584 (Stanford University Press, 1992).
Shanks, K., Senthilarasu, S., ffrench-Constant, R. H. & Mallick, T. K. White butterflies as solar photovoltaic concentrators. Sci. Rep. 5, 12267. https://doi.org/10.1038/srep12267 (2015).
Bladon, A. J. et al. How butterflies keep their cool: physical and ecological traits influence thermoregulatory ability and population trends. J. Anim. Ecol. 89, 2440–2450. https://doi.org/10.1111/1365-2656.13319 (2020).
Lamas, G. The dismorphiinae (Pieridae) of Mexico, central America and the Antilles. Mexi Soc. Lepi. 5, 3–37 (1979).
Hill, G. M., Kawahara, A. Y., Daniels, J. C., Bateman, C. C. & Scheffers, B. R. Climate change effects on animal ecology: butterflies and moths as a case study. Biol. Rev. 96, 2113–2126. https://doi.org/10.1111/brv.12746 (2021).
Oberhauser, K. & Peterson, A. Modelling current and future potential wintering distributions of Eastern North American monarch butterflies. Proc. Natl. Acad. Sci. U S A. 100, 14063–14068. https://doi.org/10.1073/pnas.2331584100 (2003).
Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Mooney, H. A. & Field, C. B. Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc. Natl. Acad. Sci. U S A. 100, 7650–7654. https://doi.org/10.1073/pnas.0932734100 (2003).
Trotter, R. T., Cobb, N. S. & Whitham, T. G. Arthropod community diversity and trophic structure: a comparison between extremes of plant stress. Ecol. Entomol. 33, 1–11. https://doi.org/10.1111/j.1365-2311.2007.00941.x (2008).
Kishimoto-Yamada, K. & Itioka, T. Consequences of a severe drought associated with an El Niño-Southern Oscillation on a light-attracted leaf-beetle (Coleoptera, Chrysomelidae) assemblage in Borneo. J. Trop. Ecol. 24, 229–233. https://doi.org/10.1017/S0266467408004811 (2008).
Nielsen, E. T. & Nielsen, H. T. Temperatures preferred by the Pierid Ascia Monuste L. Ecology 40, 181–185. https://doi.org/10.2307/1930027 (1959).
Advani, N. K., Parmesan, C. & Singer, M. C. Takeoff temperatures in Melitaea Cinxia butterflies from latitudinal and elevational range limits: A potential adaptation to solar irradiance. Ecol. Entomol. 44, 389–396. https://doi.org/10.1111/een.12714 (2019).
Hayes, M. P., Hitchcock, G. E., Knock, R. I., Lucas, C. B. H. & Turner, E. C. Temperature and territoriality in the Duke of Burgundy butterfly, Hamearis Lucina. J. Insect Conserv. 23, 739–750. https://doi.org/10.1007/s10841-019-00166-6 (2019).
Wang, X. et al. Greater impacts from an extreme cold spell on tropical than temperate butterflies in Southern China. Ecosphere 7, e01315. https://doi.org/10.1002/ecs2.1315 (2016).
Ehrlich, P. R. et al. Extinction, reduction, stability and increase: the responses of checkerspot butterfly (Euphydryas) populations to the California drought. Oecologia 46, 101–105. https://doi.org/10.1007/BF00346973 (1980).
Huntley, B. et al. Explaining patterns of avian diversity and endemicity: climate and biomes of Southern Africa over the last 140,000 years. J. Biogeogr. 43, 874–886. https://doi.org/10.1111/jbi.12714 (2016).
Alves, W. F. et al. Connectivity and climate influence diversity–stability relationships across Spatial scales in European butterfly metacommunities. Glob Ecol. Biogeogr. 33, 1–16. https://doi.org/10.1111/geb.13896 (2024).
Chowdhury, S., Fuller, R. A., Dingle, H., Chapman, J. W. & Zalucki, M. P. Migration in butterflies: a global overview. Biol. Rev. 96, 1462–1483. https://doi.org/10.1111/brv.12714 (2021).
Kühne, G., Kosuch, J., Hochkirch, A. & Schmitt, T. Extra-Mediterranean glacial refugia in a mediterranean faunal element: the phylogeography of the chalk-hill blue Polyommatus Coridon (Lepidoptera, Lycaenidae). Sci. Rep. 7, 43533. https://doi.org/10.1038/srep43533 (2017).
Habel, J. C., Lens, L., Rödder, D. & Schmitt, T. From Africa to Europe and back: refugia and range shifts cause high genetic differentiation in the marbled white butterfly Melanargia Galathea. BMC Evol. Biol. 11, 1–15. https://doi.org/10.1186/1471-2148-11-215 (2011).
Foster, P. The potential negative impacts of global climate change on tropical montane cloud forests. Earth Sci. Rev. 55, 73–106. https://doi.org/10.1016/S0012-8252(01)00056-3 (2001).
Cannone, N., Sgorbati, S. & Guglielmin, M. Unexpected impacts of climate change on alpine vegetation. Front. Ecol. Environ. 5, 360–364. https://doi.org/10.1890/1540-9295 (2007).
Wilson, R. J. et al. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. lett. 8, 1138–1146. https://doi.org/10.1111/j.1461-0248.2005.00824.x (2005).
Liang, Q. et al. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan mountains. J. Biogeogr. 45, 1334–1344. https://doi.org/10.1111/jbi.13229 (2018).
Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110. https://doi.org/10.1126/sciadv.abe1110 (2021).
Hu, R. et al. Shifts in bird ranges and conservation priorities in China under climate change. PLoS One. 15, e0240225. https://doi.org/10.1371/journal.pone.0240225 (2020).
Lamsal, P., Kumar, L., Aryal, A. & Atreya, K. Future climate and habitat distribution of Himalayan musk deer (Moschus chrysogaster). Ecol. Inf. 44, 101–108. https://doi.org/10.1016/j.ecoinf.2018.02.004 (2018).
Yang, F., Hu, J. & Wu, R. Combining endangered plants and animals as surrogates to identify priority conservation areas in Yunnan, China. Sci. Rep. 6, 30753. https://doi.org/10.1038/srep30753 (2016).
Ma, F. Z. et al. Progress in construction of China butterfly diversity observation network (China BON-Butterflies). J. Ecol. Rural Environ. 34, 27–36. https://doi.org/10.11934/j.issn.1673-4831.2018.01.004 (2018).
Chamberlain, S., Barve, V., Mcglinn, D., Oldoni, D., Desmet, P., Geffert, L., & Ram, K. rgbif: Interface to the global biodiversity informationfacility API. R package version 3.7.2. https://CRAN.R-project.org/package=rgbif, (2022).
Barve, V. & Hart, E. rinat: Access ‘iNaturalist’ Data Through APIs. R package version 0.1.9. https://docs.ropensci.org/rinat/ (2025)
Maclean, I. M. D. & Wilson, R. J. Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl. Acad. Sci. 108,12337–12342. https://doi.org/10.1073/pnas.1017352108 (2011).
Acknowledgements
We would like to express our sincere gratitude to Dr. Rehan Zafar for providing invaluable guidance in the analysis of this study. We also thank Dr. Hashmat Khan and Dr. Haroon Khan for their thoughtful review and constructive feedback on the manuscript.
Funding
This work was funded by the National Natural Science Foundation of China (grant number 32471563).
Author information
Authors and Affiliations
Contributions
R.H. and Y.H: Conceptualization; R.H, Y.H, L.F, A.R, and P.M: methodology and experiments; R.H. and Y.H: data analysis; R.H: writing—original draft preparation; Y.H, L.F, and A.R: writing—review and editing; R.H: visualization; L.X. and Y.H: supervision; L.X: project administration; L.X: funding acquisition. All authors have read and agreed to the published version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary Material 1
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Hussain, R., Miao, P., Rehman, A. et al. Species richness and Spatial distribution of three Pieridae subfamilies across mainland China under past and future climates.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-21555-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-21555-9
Keywords
- Pierinae
- Coliadinae
- Dismorphiinae
- MaxEnt model
- Species richness
- Distribution pattern
- Climate change
Source: Ecology - nature.com
