in

Temporal and spatial variation in the composition of the lichen Hypogymnia physodes from the Niepołomice Forest (Poland)


Abstract

The Niepołomice Forest, though relatively natural, is affected by air pollutants transported from nearby urban areas. To assess the impact of air pollution, we analyzed the bioaccumulation of elements (Ca, Cd, Cu, Fe, Hg, Pb, S, Zn) in thalli of Hypogymnia physodes (L.) Nyl., together with oxidative stress biomarkers (SOD, TBARS) and thallus condition, at 15 sites during heating and non-heating seasons. Seasonal variability was observed: Cd and TBARS were higher in non-heating season (0.97 µg·g⁻¹ and 0.95 mmol·g⁻¹ FM respectively), while S increased during heating season (1331 µg·g⁻¹), suggesting emissions from fuel combustion. Spatial differences were most pronounced for Cd and Zn. In the western part of the forest, H. physodes was absent at some sites, and lichens showed elevated Pb and Cu concentrations with increased SOD activity, indicating strong traffic-related pollution. In the east, thalli contained a high proportion of degenerated algae, associated with elevated Cd, Hg, and S, as well as other stressors. Overall, element concentrations were comparable to values reported from other regions of Poland. The study highlights that even seemingly natural forests are subject to significant pollution pressure. Combining chemical data with biomarkers offers deeper insight into the effects of toxic elements on lichen bioindicators.

Data availability

The data are available in Open Research Data Repository of Krakow Universities RODBUK: https://doi.org/10.24917/VYJKFU.

References

  1. Weiner, J., Fredro-Boniecki, S., Reed, D., Maclean, A. & Strong, M. Niepołomice Forest – a GIS analysis of ecosystem response to industrial pollution. Environ. Pollut. 98 (3), 381–388. https://doi.org/10.1016/S0269-7491(97)00152-8 (1997).

    Google Scholar 

  2. Wojewódzki Inspektorat Ochrony Środowiska w Krakowie. Raport o stanie środowiska w województwie małopolskim w. [Report on the state of the environment in the Małopolskie Voivodeship in 2016.]. Wojewódzki Inspektorat Ochrony Środowiska w Krakowie. (2017) (2016).

  3. Kiszka, J. Lichenoindykacja obszaru województwa krakowskiego. [Licheno-indication of the area of the Cracow voivodeship]. Studia Ośrodka Dokumentacji Fizjograficznej. 18, 201–212 (1990).

    Google Scholar 

  4. Kiszka, J. & Grodzińska, K. Lichen flora and air pollution in the niepolomice forest (S Poland) in 1960 – 200. Biol. (Bratislava). 59 (1), 25–37 (2004). ISSN 0006-3088.

    Google Scholar 

  5. Grabowski, A. Zmiany morfologiczne koron sosny w Puszczy Niepołomickiej. [Morphological changes of pine crowns in the Niepołomice Forest]. Studia Ośrodka Dokumentacji Fizjograficznej. 9, 357–367 (1981).

    Google Scholar 

  6. Grodzińska, K. Zawartość Siarki w ogólnej w Szpilkach Sosny Zwyczajnej (Pinus silvestris) z Puszczy Niepołomickiej. [Total sulphur content of Scots pine (Pinus silvestris) pins from the Niepołomice Forest]. Studia Ośrodka Dokumentacji Fizjograficznej. 9, 293–301 (1981).

    Google Scholar 

  7. Grodzińska, K., Godzik, B., Darowska, E. & Pawłowska, B. Concentration of heavy metals in trophic chains of Niepołomice forest. S Pol. Ekologia Polska. 35 (2), 327–344 (1987).

    Google Scholar 

  8. Grodzińska, K., Szarek-Łukaszewska, G., Frontasyeva, M., Pavlov, S. S. & Gudorina, S. F. Multielement concentration in mosses in the forest influenced by industrial emissions (Niepołomice Forest, S Poland) at the end of the 20th century. Pol. J. Environ. Stud. 14 (2), 165–172 (2005).

    Google Scholar 

  9. Godzik, B. & Szarek, G. Heavy metals in mosses from the Niepołomice Forest, Southern Poland – changes in 1975–1992. Fragmenta Floristica Et Geobotanica. 38 (1), 199–208 (1993).

    Google Scholar 

  10. Godzik, B. & Szarek-Łukaszewska, G. Concentrations of heavy metals in Moehringia trinervia (Caryophyllaceae) in the Niepołomice forest (S Poland) – changes from 1984 to 1999. Pol. Bot. Stud. 19, 43–47 (2005).

    Google Scholar 

  11. Kapusta, P., Stanek, M., Szarek-Łukaszewska, G. & Godzik, B. Long-term moss monitoring of atmospheric deposition near a large steelworks reveals the growing importance of local non-industrial sources of pollution. Chemosphere 230, 29–39 (2019).

    Google Scholar 

  12. Kiszka, J. Wpływ emisji miejskich i przemysłowych na florę porostów (Lichenes) Krakowa i Puszczy Niepołomickiej. [Influence of urban and industrial emissions on the lichen flora (Lichenes) of Kraków and the Niepołomice Forest]. Prace Monograficzne Wyższej Szkoły Pedagogicznej W Krakowie. 19, 5–32 (1977).

    Google Scholar 

  13. Kiszka, J. Lichens. In: K. Grodzińska (Ed.). Acidification of forest environment (Niepołomice Forest) caused by SO2 emissions from steel mills (Final report on investigations from the period July 1.1976-June 30.). Institute of Botany Polish Academy of Sciences, Cracow: 86–89. (1980).

  14. Kapusta, P., Szarek-Łukaszewska, G. & Kiszka, J. Spatial analysis of lichen species richness in a disturbed ecosystem (Niepołomice Forest, S Poland). Lichenologist 36 (3–4), 249–260 (2004).

    Google Scholar 

  15. Seaward, M. R. D. Lichens and sulphur dioxide air pollution: field studies. Environ. Reviews. 1 (2). https://doi.org/10.1139/a93-007 (1993).

  16. Purvis, O. W. & Pawlik-Skowrońska, B. Lichens and metals. Br. Mycological Soc. Symposia Ser. 27, 175–200. https://doi.org/10.1016/S0275-0287(08)80054-9 (2008).

    Google Scholar 

  17. Boruah, T., Devi, H. & Sarkar, S. Lichen as bio indicators. In: (eds Das, A. K., Sharma, A., Kathuria, D., Ansari, M. J. & Bhardwaj, G.) Chemistry, Biology and Pharmacology of Lichen: 289–304. John Wiley & Sons Ltd. https://doi.org/10.1002/9781394190706.ch18 (2024).

  18. Mota, L. M., Bravo, J. V. M. & Pereira, B. B. Urban environmental risk assessment through biomonitoring: a multivariate approach using Mangifera indica, lichens, and air pollutants. Environ. Pollut. 385, 127102. https://doi.org/10.1016/j.envpol.2025.127102 (2025).

    Google Scholar 

  19. Bąbelewska, A., Musielińska, R. & Ciesielski, W. Bioindykacyjna Ocena Stopnia zagrożenia Metalami ciężkimi Zbiorowisk leśnych Załęczańskiego Parku Krajobrazowego Przy Wykorzystaniu zdolności Kumulacji Plech Porostu Hypogymnia physodes L. [Bioindically rating of heavy metals hazard association for land forests of the załęcze landscape park with the use of cumulation capacity of the Hypogymnia physodes L]. Prace Naukowe Akademii Im Jana Długosza W Częstochowie: Technika Informatyka Inżynieria Bezpieczeństwa. 6, 279–496. https://doi.org/10.16926/tiib.2018.06.35 (2018).

    Google Scholar 

  20. Kłos, A. et al. Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in Southern and north-eastern Poland. Sci. Total Environ. 627, 438–449. https://doi.org/10.1016/j.scitotenv.2018.01.211 (2018).

    Google Scholar 

  21. Bahinskyi, L., Świsłowski, P., Isinkaralar, O., Isinkaralar, K. & Rajfur, M. Low-cost monitoring of airborne heavy metals using lichen bioindicators: insights from Opole, Southern Poland. Atmosphere 16 (5), 576. https://doi.org/10.3390/atmos16050576 (2025).

    Google Scholar 

  22. Jóźwiak, M. Kumulacja metali ciężkich i zmiany morfologiczne w plechach porostu Hypogymnia physodes (L.)Nyl. [Accumulation of heavy metals and morphological changes in thalli of Hypogymnia physodes (L.)Nyl.) lichen]. Monit. Środowiska Przyrodniczego. 8, 51–56 (2007).

    Google Scholar 

  23. Daimari, R. et al. Anatomical, physiological, and chemical alterations in lichen (Parmotrema tinctorum (Nyl.) Hale) transplants due to air pollution in two cities of Brahmaputra Valley, India. Environ. Monit. Assess. 193 (101). https://doi.org/10.1007/s10661-021-08897-3 (2021).

  24. Kumari, K., Kumar, V., Nayaka, S., Saxena, G. & Sanyal, I. Physiological alterations and heavy metal accumulation In the transplanted lichen Pyxine cocoes (Sw.) Nyl. In Lucknow city, Uttar Pradesh. Environ. Monit. Assess. 196, 84. https://doi.org/10.1007/s10661-023-12256-9 (2024).

    Google Scholar 

  25. Sujetovienė, G. & Česynaitė, J. Assessment of air pollution at the indoor environment of a shooting range using lichens as biomonitors. J. Toxicol. Environ. Health. 84 (7), 273–278. https://doi.org/10.1080/15287394.2020.1862006 (2020).

    Google Scholar 

  26. Osyczka, P., Chowaniec, K. & Skubała, K. Membrane lipid peroxidation in lichens determined by the TBARS assay as a suitable biomarker for the prediction of elevated level of potentially toxic trace elements in soil. Ecol. Ind. 146, 109910. https://doi.org/10.1016/j.ecolind.2023.109910 (2023).

    Google Scholar 

  27. Maring, T., Kumar, S., Jha, A. K., Kumar, N. & Pandey, S. P. Airborne particulate matter and associated heavy metals: a review. Macromolecular Symposia. 407, 2100487. https://doi.org/10.1002/masy.202100487 (2023).

    Google Scholar 

  28. Bačkor, M. & Fahselt, D. Lichen photobionts and metal toxicity. Symbiosis (Rehovot). 46 (1), 1–10 (2008).

    Google Scholar 

  29. Álvarez, R. et al. Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea thalli and its isolated microalgae. Microb. Ecol. 69, 698–709. https://doi.org/10.1007/s00248-014-0524-0 (2015).

    Google Scholar 

  30. Lucadamo, L., Gallo, L. & Corapi, A. Detection of air quality improvement within a suburban district (southern Italy) by means of lichen biomonitoring. Atmospheric Pollution Res. 13 (3), 101346. https://doi.org/10.1016/j.apr.2022.101346 (2022).

    Google Scholar 

  31. Thakur, M., Bhardwaj, S., Kumar, V. & Rodrigo-Comino, J. Lichens as effective bioindicators for monitoring environmental changes: a comprehensive review. Total Environ. Adv. 9, 200085. https://doi.org/10.1016/j.teadva.2023.200085 (2024).

    Google Scholar 

  32. Masindi, V., Mkhonza, P. & Tekere, M. Sources of heavy metals pollution. In: Inamuddin, Ahamed, M.I., Lichtfouse, E., Altalhi, T. (Eds.). Remediation of heavy metals. environmental chemistry for a sustainable world 70. Springer, Cham: 419–454. (2021). https://doi.org/10.1007/978-3-030-80334-6_17

  33. Ručová, D. et al. Investigation of calcium forms in lichens from travertine sites. Plants 11, 620. https://doi.org/10.3390/plants11050620 (2022).

    Google Scholar 

  34. Matei, E. et al. Heavy metals in particulate matter—trends and impacts on environment. Molecules 30 (7), 1455. https://doi.org/10.3390/molecules30071455 (2025).

    Google Scholar 

  35. Charlesworth, S., De Miguel, E. & Ordóñez, A. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ. Geochem. Health. 33, 103–123. https://doi.org/10.1007/s10653-010-9325-7 (2011).

    Google Scholar 

  36. Alloway, B. J. Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability, Environmental Pollution 22. Dordrecht, The Netherlands: Springer. (2013).

  37. Turhan, S. B., Oruc, I. & Ozdemir, H. Impact of heating season on the soil pollution in Kirklareli Province of Turkey. Environ. Monit. Assess. 193, 209. https://doi.org/10.1007/s10661-021-09002-4 (2021).

    Google Scholar 

  38. Frati, L. & Brunialti, G. Recent trends and future challenges for lichen biomonitoring in forests. Forests 14 (1), 647. https://doi.org/10.3390/f14030647 (2023).

    Google Scholar 

  39. Kiszka, J. & Porosty Kotliny, S. Część I. Porosty okręgu Puszczy Niepołomickiej [The lichens of the Sandomierz Lowland. Part I: lichens of Niepołomice forest district]. Fragmenta Floristica Et Geobotanica. 10 (4), 527–564 (1964).

    Google Scholar 

  40. Kiszka, J. Bioindykacja środowiska przyrodniczego na przykładzie porostów w Krakowie i Puszczy Niepołomickiej. [Bioindication of the natural environment on the example of lichens of Cracow and the Niepołomice Forest]. In: Grodziński, W., Juszczyk, W., Kiszka, J., Medwecka-Kornaś, A. (Eds.). Problemy ekologiczne i fizjologiczne w ochronie środowiska makroregionu Południowego. [Ecological and physiological problems in the protection of the environment of the Southern macro-region]. Sympozjum „Człowiek i Środowisko, Sesja XXX-lecia PRL: 11–17. (1974).

  41. Kiszka, J. Porosty Rezerwatu Lipówka w Puszczy Niepołomickiej [The lichens in the forest reserve of Lipówka in the Niepołomice Forest]. Studia Nat. Seria A. 17, 149–158 (1978).

    Google Scholar 

  42. Kiszka, J. Flora porostów (Lichenes) Puszczy Niepołomickiej. [Flora of lichens (Lichenes) of the Niepołomice Forest]. Studia Ośrodka Dokumentacji Fizjograficznej. 9, 335–356 (1981).

    Google Scholar 

  43. Gazda, A. & Szlaga, A. Obce Gatunki Drzewiaste w północnym kompleksie Puszczy Niepołomickiej [Alien tree species in the Northern part of the Niepołomice Forest]. Sylwan 152 (4), 58–67 (2008).

    Google Scholar 

  44. Godzik, B. & Piechnik, Ł. Puszcza Niepołomicka – zrównoważona gospodarka leśna a ochrona bogactwa przyrodniczego. [The Niepołomice forest – sustainable forest management and protection of natural wealth]. 58 Zjazd Polskiego Towarzystwa Botanicznego. [58th Congress of the Botanical Society]. Przewodnik Sesji Terenowych: 183–213 (2019).

  45. Climate-Data. org. Klimat: Niepołomice. Climate-Data.org. https://pl.climate-data.org/europa/polska/lesser-poland-voivodeship/niepołomice-10403/. [Access 10-05-2025]. (2025)sea.

  46. Betleja, L. Badania morfologii plech Hypogymnia physodes (L.) Nyl. w płatach pni sosny (Pinus silvestris) w borach woj. Katowickiego. [Studies on the morphology of Hypogymnia physodes (L.) Nyl. thalli in pine (Pinus silvestris) trunk sections in forests in the Katowice Province]. In: Lipnicki, L. (Ed.). V Zjazd Lichenologów Polskich, Porosty (Lichenes) Pszczewskiego PK. [5th Congress of Polish Lichenologists, Lichens Pszczewski PK]. Instytut Badań i Ekspertyz Naukowych, Gorzów Wielkopolski: 95–101. (1989).

  47. Bielecki, K. & Kulczycki, G. Modyfikacja metody Buttersa i chenery’ego oznaczenia Siarki ogólnej w roślinach i glebie. [Modification of Butters-Chenery method for determination of total sulfur in plants and soil]. Przemysł Chemiczny. 91 (5), 688–691 (2012).

    Google Scholar 

  48. Gawrońska, K., Romanowska, E., Miszalski, Z. & Niewiadomska, E. Limitation of C3–CAM shift in the common ice plant under high irradiance. J. Plant Physiol. 170 (2), 129–135. https://doi.org/10.1016/j.jplph.2012.09.019 (2013).

    Google Scholar 

  49. Egger, R., Schlee, D. & Turk, R. Changes of physiologicaland biochemical parameters in the lichen Hypogymnia physodes (L) Nyl. Due to the action of air pollutants—a field study. Phyton 34, 229–242 (1994).

    Google Scholar 

  50. Bradford, M. M. A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 (1976).

    Google Scholar 

  51. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685. https://doi.org/10.1038/227680a0 (1970).

    Google Scholar 

  52. Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 (1), 276–287. https://doi.org/10.1016/0003-2697(71)90370-8 (1971).

    Google Scholar 

  53. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL (2020). https://www.R-project.org/

  54. Kassambara, A. & Mundt, F. Factoextra Extract and visualize the results of multivariate data analyses. R Package Version 1.0.7. (2020).

  55. Mazerolle, M. J. AICcmodavg Model selection and multimodel inference based on (Q)AIC(c). R Package, version 2.2-2. (2019). https://cran.r-project.org/ package = AICcmodavg.

  56. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 (1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Google Scholar 

  57. Pebesma, E. Simple features for R: standardized support for Spatial vector data. R J. 10 (1), 439–446. https://doi.org/10.32614/RJ-2018-009 (2018).

    Google Scholar 

  58. Pebesma, E. & Bivand, R. Spatial Data Science With Applications in R. Chapman & Hall. (2023). https://r-spatial.org/book/

  59. Bivand, R., Nowosad, J. & Lovelace, R. _spData Datasets for spatial analysis. (2025). https://doi.org/10.32614/CRAN.package.spData

  60. Ben-Shachar, M., Lüdecke, D. & Makowski, D. Estimation of effect size indices and standardized parameters. J. Open. Source Softw. 5 (56), 2815. https://doi.org/10.21105/joss.02815 (2020).

    Google Scholar 

  61. Lenth, R. & Piaskowski, J. _emmeans Estimated marginal means, aka least-squares means. (2025). https://doi.org/10.32614/CRAN.package.emmeans

  62. Białońska, D. & Dayan, F. E. Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. J. Chem. Ecol. 31, 2975–2991. https://doi.org/10.1007/s10886-005-8408-x (2005).

    Google Scholar 

  63. Migaszewski, Z. M., Gałuszka, A., Świercz, A. & Kucharzyk, J. Element concentrations in soils and plant bioindicators in selected habitats of the holy cross mountains. Pol. Water Air Soil. Pollution. 129, 369–386. https://doi.org/10.1023/A:1010308517145 (2001).

    Google Scholar 

  64. Sawicka-Kapusta, K., Zakrzewska, M., Dudzik, P. & Gołuszka, K. Zanieczyszczenia Powietrza Stacji Bazowych ZMSP w 2011 Roku Na Podstawie Koncentracji Metali ciężkich i Siarki w plechach Porostu Hypogymnia physodes Zebranych z naturalnego środowiska. [Air pollution of the base stations of the integrated monitoring of natural environment in 2011 on the basis of heavy metals and sulphur concentration in lichen Hypogymnia physodes collected from natural environment]. Monit. Środowiska Przyrodniczego. 16, 49–57 (2014).

    Google Scholar 

  65. Nimis, P. L., Lazzarin, G., Lazzarin, A. & Skert, N. Biomonitoring of trace elements with lichens in Veneto (NE Italy). Sci. Total Environ. 255 (1–3), 97–111. https://doi.org/10.1016/S0048-9697(00)00454-X (2000).

    Google Scholar 

  66. Johansson, L. S., Tullin, C., Leckner, B. & Sjövall, P. Particle emissions from biomass combustion in small combustors. Biomass Bioenerg. 25 (4), 435–446. https://doi.org/10.1016/S0961-9534(03)00036-9 (2003).

    Google Scholar 

  67. Sippula, O., Hokkinen, J., Puustinen, H., Yli-Pirilä, P. & Jokiniemi, J. Comparison of particle emissions from small heavy fuel oil and wood-fired boilers. Atmospheric Environ. 43 (32), 4855–4864. https://doi.org/10.1016/j.atmosenv.2009.07.022 (2009).

    Google Scholar 

  68. Świetlik, R., Trojanowska, M. & Rabek, P. Distribution patterns of Cd, Cu, Mn, Pb and Zn in wood fly Ash emitted from domestic boilers. Chem. Speciat. Bioavailab. 35 (1), 63–71. https://doi.org/10.3184/095422912X13497968675047 (2012).

    Google Scholar 

  69. Cui, W. et al. Occurrence and release of cadmium, chromium, and lead from stone coal combustion. Int. J. Coal Sci. Technol. 6, 586–594. https://doi.org/10.1007/s40789-019-00281-4 (2019).

    Google Scholar 

  70. Hutton, M. Sources of cadmium in the environment. Ecotoxicol. Environ. Saf. 7 (1), 9–24. https://doi.org/10.1016/0147-6513(83)90044-1 (1983).

    Google Scholar 

  71. Nzihou, A. & Stanmore, B. The fate of heavy metals during combustion and gasification of contaminated biomass – A brief review. J. Hazard. Mater. 256–257, 56–66. https://doi.org/10.1016/j.jhazmat.2013.02.050 (2013).

    Google Scholar 

  72. Ciężka, M. M. et al. The coupled study of metal concentrations and electron paramagnetic resonance (EPR) of lichens (Hypogymnia physodes) from the Świętokrzyski National Park—environmental implications. Environ. Sci. Pollut. Res. 25, 25348–25362. https://doi.org/10.1007/s11356-018-2586-x (2018).

    Google Scholar 

  73. Wiseman, R. D. & Wadleigh, M. A. Lichen response to changes in atmospheric sulphur: isotopic evidence. Environ. Pollut. 116 (2), 235–241. https://doi.org/10.1016/S0269-7491(01)00133-6 (2002).

    Google Scholar 

  74. Lin, C. K. et al. A global perspective on sulfur oxide controls in coal-fired power plants and cardiovascular disease. Sci. Rep. 8, 2611. https://doi.org/10.1038/s41598-018-20404-2 (2018).

    Google Scholar 

  75. Shikhovtsev, M. Y. et al. Features of Temporal variability of the concentrations of gaseous trace pollutants in the air of the urban and rural areas in the Southern Baikal region (East Siberia, Russia). Appl. Sci. 14 (18), 8327. https://doi.org/10.3390/app14188327 (2024).

    Google Scholar 

  76. Ciężka, M. M. et al. The multi-isotope biogeochemistry (S, C, N and Pb) of Hypogymnia physodes lichens: air quality approach in the Świętokrzyski National Park, Poland. Isot. Environ. Health Stud. 58 (4–6), 340–362. https://doi.org/10.1080/10256016.2022.2110591 (2022).

    Google Scholar 

  77. Uchwała nr XVIII/243/16 Sejmiku Województwa Małopolskiego z dnia 15.01.2016. W sprawie wprowadzenia na obszarze Gminy Miejskiej Kraków ograniczeń w zakresie eksploatacji instalacji, w których następuje spalanie paliw. [Resolution No. XVIII/243/16 of the Sejmik of the Małopolskie Voivodeship of 15.01.2016. On the introduction in the area of the Municipality of Krakow of restrictions on the operation of installations in which fuel is burned]. Poland. (2016).

  78. Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 (9), 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9 (2002).

    Google Scholar 

  79. Bačkor, M. & Loppi, S. Interactions of lichens with heavy metals. Biol. Plantetarum. 53, 214–222. https://doi.org/10.1007/s10535-009-0042-y (2009).

    Google Scholar 

  80. Santos, A. M. D. et al. Impacts of cd pollution on the vitality, anatomy and physiology of two morphologically different lichen species of the genera Parmotrema and Usnea. Evaluated Under Experimental Conditions Divers. 14, 926. https://doi.org/10.3390/d14110926 (2022).

    Google Scholar 

  81. Aslan, A. et al. The assessment of lichens as bioindicator of heavy metal pollution from motor vehicles activites. Afr. J. Agric. Res. 6 (7), 1698–1706. https://doi.org/10.5897/AJAR10.331 (2011).

    Google Scholar 

  82. Gómez, S., Vergara, M., Rivadeneira, B., Rodríguez, J. & Carpio, A. Use of lichens as bioindicators of contamination by agrochemicals and metals. Environ. Sci. Pollut. Res. 31, 49214–49226. https://doi.org/10.1007/s11356-024-34450-z (2024).

    Google Scholar 

  83. Szarek-Łukaszewska, G., Grodzińska, K. & Braniewski, S. Heavy metal concentration in the moss Pleurozium schreberi in the Niepołomice Forest, poland: changes during 20 years. Environ. Monit. Assess. 79, 231–237. https://doi.org/10.1023/A:1020226526451 (2002).

    Google Scholar 

  84. Olivia, S. R. & Rautio, P. Could ornamental plants serve as passive biomonitors in urban area? J. Atmos. Chem. 49, 137–148. https://doi.org/10.1007/s10874-004-1220-0 (2004).

    Google Scholar 

  85. Hjortenkrans, D. S., Bergbäck, B. G. & Häggerud, A. V. Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environ. Sci. Technol. 41 (15), 5224–5230. https://doi.org/10.1021/es070198o (2007).

    Google Scholar 

  86. Jeong, H. Toxic metal concentrations and Cu–Zn–Pb isotopic compositions in tires. J. Anal. Sci. Technol. 13 (2). https://doi.org/10.1186/s40543-021-00312-3 (2022).

  87. Al-Sabbagh, T. A. & Shreaz, S. Impact of lead pollution from vehicular traffic on highway-side grazing areas: challenges and mitigation policies. Int. J. Environ. Res. Public Health. 22 (2). https://doi.org/10.3390/ijerph22020311 (2025).

  88. Branquinho, C., Brown, D. H., Máguas, C. & Catarino, F. Lead (Pb) uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species. Environ. Exp. Bot. 37 (2–3), 95–105. https://doi.org/10.1016/S0098-8472(96)01038-6 (1997).

    Google Scholar 

  89. Kováčik, J., Dresler, S., Babula, P., Hladký, J. & Sowa, I. Calcium has protective impact on cadmium-induced toxicity in lichens. Plant Physiol. Biochem. 156, 591–599. https://doi.org/10.1016/j.plaphy.2020.10.007 (2020).

    Google Scholar 

  90. Ministerstwo Klimatu i Środowiska. Krajowy bilans emisji SO2, NOX, CO, NH3, NMLZO, pyłów, metali ciężkich i TZO za lata 1990–2018. Raport syntetyczny. [National emissions balance of SO2, NOX, CO, NH3, NMLZO, dust, heavy metals and TZO for the period 1990–2018. Synthesis report]. Krajowy Ośrodek Inwentaryzacji i Raportowania Emisji, Instytut Ochrony Środowiska – Państwowy Instytut Badawczy, Warszawa. (2020).

  91. Zeedijk, H. & Velds, C. A. The transport of sulphur dioxide over a long distance. Atmospheric Environ. 7 (9), 849–862. https://doi.org/10.1016/0004-6981(73)90107-8 (1973).

    Google Scholar 

  92. Marumoto, K., Hayashi, M. & Takami, A. Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia. Atmos. Environ. 117, 147–155. https://doi.org/10.1016/j.atmosenv.2015.07.019 (2015).

    Google Scholar 

  93. Jackson, T. A. Long-range atmospheric transport of mercury to ecosystems, and the importance of anthropogenic emissions—a critical review and evaluation of the published evidence. Environ. Reviews. 5 (2). https://doi.org/10.1139/a97-005 (1997).

  94. Xiao, H., Carmichael, G. R., Durchenwald, J., Thornton, D. & Bandy, A. Long-range transport of SOx and dust in East Asia during the PEM B experiment. J. Geophys. Research: Atmos. 102 (D23), 28589–28612. https://doi.org/10.1029/96JD03782 (1997).

    Google Scholar 

  95. Sigler, J. M., Lee, X. & Munger, W. Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire. Environ. Sci. Technol. 37 (19), 4343–4347. https://doi.org/10.1021/es026401r (2003).

    Google Scholar 

  96. Qu, Y., An, J., He, Y. & Zheng, J. An overview of emissions of SO2 and nox and the long-range transport of oxidized sulfur and nitrogen pollutants in East Asia. J. Environ. Sci. 44, 13–25. https://doi.org/10.1016/j.jes.2015.08.028 (2016).

    Google Scholar 

  97. Inspektorat Ochrony Środowiska. Krajowy raport mozaikowy o stanie środowiska. [National mosaic report on the state of the environment.] Wojewódzki Inspektorat Ochrony Środowiska Kraków, Kraków. (2007).

  98. Ministerstwo Klimatu i Środowiska. Krajowy bilans emisji SO2, NOX, CO, NH3, NMLZO, pyłów, metali ciężkich i TZO za lata 1990–2019. Raport syntetyczny. [National emissions balance of SO2, NOX, CO, NH3, NMLZO, dust, heavy metals and TZO for the period 1990–2019. Synthesis report]. Krajowy Ośrodek Inwentaryzacji i Raportowania Emisji, Instytut Ochrony Środowiska – Państwowy Instytut Badawczy, Warszawa. (2021).

  99. Główny Inspektorat Ochrony Środowiska. Regionalny Wydział monitoringu Środowiska w Krakowie, departament monitoringu Środowiska. Roczna Ocena jakości Powietrza w województwie małopolskim: Raport wojewódzki Za Rok 2019. [Annual air quality assessment in the Małopolska province: provincial report for 2019]. Główny Inspektorat Ochrony Środowiska (2020).

  100. Hernansanz-Agustín, P. & Enríquez, J. A. Generation of reactive oxygen species by mitochondria. Antioxidants 10, 415. https://doi.org/10.3390/antiox10030415 (2021).

    Google Scholar 

Download references

Acknowledgements

The study was founded through the statutory research subvention of UKEN: BS-472/G/2018 “Ocena stanu środowiska naturalnego Puszczy Niepołomickiej w oparciu o porost Hypogymnia physodes (Nyl)”. [Assessment of the natural environment of the Niepołomice Forest based on the lichen Hypogymnia physodes (Nyl.)].

Funding

The study was founded through the statutory research subvention of UKEN: BS-472/G/2018 “Ocena stanu środowiska naturalnego Puszczy Niepołomickiej w oparciu o porost Hypogymnia physodes (Nyl)”. [Assessment of the natural environment of the Niepołomice Forest based on the lichen Hypogymnia physodes (Nyl.)].

Author information

Authors and Affiliations

Authors

Contributions

RK: Conceptualization, Funding acquisition, Investigation, Methodology, Writing – review & editing. IW: Formal analysis, Validation, Visualization, Writing – original draft.DK: Validation, Visualization, Writing – original draft. MA: Methodology, Investigation, Writing – review & editing. LB: Methodology, Investigation, Writing – review & editing. KG: Methodology, Investigation, Writing – review & editing. KK: Visualization, Writing – review & editing. ŁJB: Conceptualization, Data curation, Formal analysis, Methodology, Project administration, Supervision, Writing – review & editing.

Corresponding author

Correspondence to
Izabela Wiśniowska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Kościelniak, R., Wiśniowska, I., Kadłub, D. et al. Temporal and spatial variation in the composition of the lichen Hypogymnia physodes from the Niepołomice Forest (Poland).
Sci Rep (2025). https://doi.org/10.1038/s41598-025-31463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-31463-7


Source: Ecology - nature.com

Sustainable soil management practices are associated with increases in crop defense through soil microbiome changes

Taphonomic patterns of a WWI Alpine mass grave: insights from the Italian front

Back to Top