in

Thermal evolution of light hydrocarbon fingerprints in biodegraded oils from Ordovician reservoirs, Tabei Uplift, Tarim Basin


Abstract

Within the Tabei Uplift of the Tarim Basin, Ordovician reservoirs in both the northern Halahatang (N-Halahatang) and western Lunnan (W-Lunnan) areas experienced extensive biodegradation during the Late Hercynian (Permian). Subsequent Himalayan (Neogene–Quaternary) tectonism induced divergent burial-thermal histories: the N-Halahatang reservoirs underwent intensive maturation (> 6,500 m depth; 1.02–1.22% Ro), while the W-Lunnan reservoirs experienced milder maturation (< 5,800 m depth; 0.70–0.85% Ro). Despite similar δ13Coil values indicating genetic affinity, the relatively deeply buried biodegraded oils from the N-Halahatang area contain abundant C6–C8 light hydrocarbons (LHs), while the biodegraded oils from the W-Lunnan area exhibit only trace amounts of C6–C8 LHs. To elucidate the evolution of LHs compositions and fingerprints in biodegraded oils under thermal maturation, and to determine whether the more enriched C6–C8 LHs in the N-Halahatang oils can be attributed to enhanced burial-thermal maturation, two relatively shallower-burial biodegraded oils (Well LG40: slight to moderate biodegradation‌; Well LG7: heavy to severe biodegradation) from the W-Lunnan area were artificially pyrolyzed to various maturities. Subsequently, LH parameters of the pyrolyzed oils were compared with those of the naturally matured, deeply buried oils (heavy to severe biodegradation) from the N-Halahatang area. The results indicated that both biodegraded oils generated C6–C8 LHs through thermal cracking, and the more severely biodegraded oil (Well LG7) exhibited a lower LH maximum yield than that from Well LG40. Certain parameters for organic matter type classification (n-C7–DMCP–MCH and 3RP–5RP–6RP diagrams) generally remained applicable during thermal maturation, whereas most parameters for secondary alteration identification and maturity assessment were significantly compromised. Additionally, LH parameters of the N-Halahatang oils (1.02–1.22% Ro) matched those of the LG7 pyrolyzed oils at EasyRo = 1.00–1.20%, confirming that the enriched C6–C8 LHs in the N-Halahatang oils can be attributed to cracking of biodegraded oils (with ‌biodegradation levels equivalent to Well LG7‌) under intense burial-thermal maturation. Furthermore, the potential C6–C13 LHs derived from biodegraded oil cracking constitute 11–16 wt% of N-Halahatang’s liquid hydrocarbon resources.

Data availability

Datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Chang, X. C., Wang, T. G., Li, Q. M., Cheng, B. & Tao, X. W. Geochemistry and possible origin of petroleum in palaeozoic reservoirs from Halahatang depression. J. Asian Earth Sci. 74, 129–141. https://doi.org/10.1016/j.jseaes.2013.03.024 (2013).

    Google Scholar 

  2. Chang, X. C., Wang, T. G., Li, Q. M. & Ou, G. X. Charging of ordovician reservoirs in the Halahatang depression (Tarim Basin, NW China) determined by oil geochemistry. J. Petrol. Geol. 36, 383–398. https://doi.org/10.1111/jpg.12562 (2013).

    Google Scholar 

  3. Wang, Y. F. et al. Phase change of the ordovician hydrocarbon in the Tarim basin: A case study from the Halahatang-Shunbei area. Open. Geosci. 16, 20220629. https://doi.org/10.1515/geo-2022-0629 (2024).

    Google Scholar 

  4. Yang, P. et al. Petroleum accumulation history of deeply buried carbonate reservoirs in the Northern Tarim Basin, Northwestern China. AAPG Bull. 108, 1193–1229. https://doi.org/10.1306/06212321210 (2024).

    Google Scholar 

  5. Zhang, S. C. et al. Geochemistry of paleozoic marine oils from the Tarim Basin, NW China. Part 4: paleobiodegradation and oil charge mixing. Org. Geochem. 67, 41–57. https://doi.org/10.1016/j.orggeochem.2013.12.008 (2014).

    Google Scholar 

  6. Li, M. J. et al. Paleo-heat flow evolution of the Tabei uplift in Tarim Basin, Northwest China. J. Asian Earth Sci. 37, 52–66. https://doi.org/10.1016/j.jseaes.2009.07.007 (2010).

    Google Scholar 

  7. Wang, T. G. et al. Stratigraphic thermohistory and its implications for regional geoevolution in the Tarim Basin, NW China. Sci. China Earth Sci. 53, 1495–1505. https://doi.org/10.1007/s11430-010-4069-x (2010).

    Google Scholar 

  8. He, D. F., Jia, C. Z., Liu, S. B., Pan, W. Q. & Wang, S. J. Dynamics for multistage pool formation of Lunnan low uplift in Tarim basin. Chin. Sci. Bull. 47, 128–138. https://doi.org/10.1007/bf02902829 (2002).

    Google Scholar 

  9. Cai, Z. X., Wu, N., Yang, H. J., Gu, Q. Y. & Han, J. F. Mechanism of evaporative fractionation in condensate gas reservoirs in Lunnan low salient. Natur. Gas Ind. 29, 21–24 (2009).

    Google Scholar 

  10. Wu, N. et al. Hydrocarbon charging of the ordovician reservoirs in Tahe-Lunnan area, China. Sci. China Earth Sci. 56, 763–772. https://doi.org/10.1007/s11430-013-4598-1 (2013).

    Google Scholar 

  11. Zhu, G. Y., Liu, X. W., Zhu, Y. F., Su, J. & Wang, K. The characteristics and the accumulation mechanism of complex reservoirs in the Hanicatam area, Tarim basin. Bull. Mineral. Petrol. Geochem. 32, 231–242 (2013).

    Google Scholar 

  12. Zhu, G. Y., Wang, M. & Zhang, T. W. Identification of polycyclic sulfides hexahydrodibenzothiophenes and their implications for heavy oil accumulation in ultra-deep strata in Tarim basin. Mar. Pet. Geol. 78, 439–447. https://doi.org/10.1016/j.marpetgeo.2016.09.027 (2016).

    Google Scholar 

  13. Zhu, G. Y. et al. Alteration and multi-stage accumulation of oil and gas in the ordovician of the Tabei Uplift, Tarim Basin, NW china: implications for genetic origin of the diverse hydrocarbons. Mar. Pet. Geol. 46, 234–250. https://doi.org/10.1016/j.marpetgeo.2013.06.007 (2013).

    Google Scholar 

  14. Zhu, G. Y. et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China. Earth Sci. Rev. 198, 102930. https://doi.org/10.1016/j.earscirev.2019.102930 (2019).

    Google Scholar 

  15. Chang, X. C., Wang, T. G., Li, Q. M., Cheng, B. & Zhang, L. P. Maturity assessment of severely biodegraded marine oils from the Halahatang depression in Tarim basin. Energy Explor. Exploit. 30, 331–350. https://doi.org/10.1260/0144-5987.30.3.331 (2012).

    Google Scholar 

  16. Li, M. J. et al. Practical application of reservoir geochemistry in petroleum exploration: case study from a paleozoic carbonate reservoir in the Tarim basin (Northwestern China). Energy Fuels. 32, 1230–1241. https://doi.org/10.1021/acs.energyfuels.7b03186 (2018).

    Google Scholar 

  17. Wang, J. B., Guo, R. T., Xiao, X. M., Liu, Z. F. & Shen, J. G. Timing and phases of hydrocarbon migration and accumulation of the formation of oil and gas pools in Lunnan low uplift of Tarim basin. Acta Sedimentol. Sin. 20, 320–325 (2002).

    Google Scholar 

  18. Zhao, W. Z., Zhu, G. Y., Su, J., Yang, H. J. & Zhu, Y. F. Study on multi stage filling and accumulation model of marine oil and gas reservoirs: A case study of the Lungudong area, Tarim basin. Acta Petrol. Sin. 28, 709–721 (2012).

    Google Scholar 

  19. Cheng, B., Wang, T. G. & Chang, X. C. Application of C5–C7 light hydrocarbons in geochemical studies: A case study of ordovician crude oils from the Halahatang depression, Tabei uplift. Nat. Gas Geosci. 24, 398–405 (2013).

    Google Scholar 

  20. Wang, Y. P., Chang, X. C., Cheng, B. & Shi, S. B. Comparison of C5-C7 light hydrocarbons in Halahatang ordovician oil analyzed by comprehensive 2-D and conventional gas chromatography. Nat. Gas Geosci. 26, 1814–1822 (2015).

    Google Scholar 

  21. Wu, X. Q., Liu, Q. Y., Tao, X. W. & Hu, G. Y. Geochemical characteristics of natural gas from Halahatang Sag in the Tarim basin. Geochimica 43, 477–488. https://doi.org/10.19700/j.0379-1726.2014.05.006 (2014).

    Google Scholar 

  22. Tissot, B. P. & Welte, D. H. Petroleum Formation and Occurence (Springer-Verlag, 1984).

  23. Hossain, M. A., Suzuki, N., Matsumoto, K., Sakamoto, R. & Takeda, N. In-reservoir fractionation and the accumulation of oil and condensates in the surma Basin, NE Bangladesh. J. Petrol. Geol. 37, 269–286. https://doi.org/10.1111/jpg.12583 (2014).

    Google Scholar 

  24. Thompson, K. F. M. Fractionated aromatic petroleums and the generation of gas-condensates. Org. Geochem. 11, 573–590. https://doi.org/10.1016/0146-6380(87)90011-8 (1987).

    Google Scholar 

  25. Thompson, K. F. M. Gas-condensate migration and oil fractionation in deltaic systems. Mar. Pet. Geol. 5, 237–246. https://doi.org/10.1016/0264-8172(88)90004-9 (1988).

    Google Scholar 

  26. Zhang, S. C. et al. Geochemistry of palaeozoic marine petroleum from the Tarim Basin, NW china: part 3. Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations. Org. Geochem. 42, 1394–1410. https://doi.org/10.1016/j.orggeochem.2011.08.013 (2011).

    Google Scholar 

  27. Zhu, X. J. et al. Effects of evaporative fractionation on diamondoid hydrocarbons in condensates from the Xihu Sag, East China sea shelf basin. Mar. Pet. Geol. 126, 104929. https://doi.org/10.1016/j.marpetgeo.2021.104929 (2021).

    Google Scholar 

  28. Cai, J., Lü, X. X. & Li, B. Y. Tectonic fracture and its significance in hydrocarbon migration and accumulation: a case study on middle and lower ordovician in Tabei uplift of Tarim Basin, NW China. Geol. J. 51, 572–583. https://doi.org/10.1002/gj.2656 (2016).

    Google Scholar 

  29. Chen, J. Q., Ma, K. Y., Pang, X. Q. & Yang, H. J. Secondary migration of hydrocarbons in ordovician carbonate reservoirs in the Lunnan area, Tarim basin. J. Petrol. Sci. Eng. 188, 106962. https://doi.org/10.1016/j.petrol.2020.106962 (2020).

    Google Scholar 

  30. Li, S. M., Zhang, B. S., Xing, L. T., Sun, H. & Yuan, X. Y. Geochemical feathers of deep hydrocarbon migration and accumulation in Halahatang-Yingmaili area of the Northern Tarim basin. Acta Petrol. Sin. 36, 92–101. https://doi.org/10.7623/syxb2015S2008 (2015).

    Google Scholar 

  31. Hill, R. J., Tang, Y. C. & Kaplan, I. R. Insights into oil cracking based on laboratory experiments. Org. Geochem. 34, 1651–1672. https://doi.org/10.1016/s0146-6380(03)00173-6 (2003).

    Google Scholar 

  32. Peters, K. E. & Moldowan, J. M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments (Prentice Hall, 1993).

  33. Jiang, B., Liu, W. M., Liao, Y. H. & Peng, P. A. Molecular transformations of heteroatomic organic compounds in crude oils caused by biodegradation and subsequent thermal maturation: insights from ESI FT-ICR MS. Org. Geochem. 188, 104741. https://doi.org/10.1016/j.orggeochem.2024.104741 (2024).

    Google Scholar 

  34. Liao, Y. H., Shi, Q., Hsu, C. S., Pan, Y. H. & Zhang, Y. H. Distribution of acids and nitrogen-containing compounds in biodegraded oils of the Liaohe basin by negative ion ESI FT-ICR MS. Org. Geochem. 47, 51–65. https://doi.org/10.1016/j.orggeochem.2012.03.006 (2012).

    Google Scholar 

  35. Pan, Y. H., Liao, Y. H. & Peng, X. Z. Variations in chemical and stable carbon isotopic compositions of Liaohe crude oil during aerobic biodegradation simulation. Geochimica 44, 581–589. https://doi.org/10.19700/j.0379-1726.2015.06.007 (2015).

    Google Scholar 

  36. Huang, Y. Y., Liao, Y. H., Xu, T., Wang, Y. P. & Peng, P. A. Characteristics of light hydrocarbons under the superimposed influence of biodegradation and subsequent thermal maturation. Org. Geochem. 177, 104557. https://doi.org/10.1016/j.orggeochem.2023.104557 (2023).

    Google Scholar 

  37. Liao, Y. H. et al. Superimposed secondary alteration of oil reservoirs. Part I: influence of biodegradation on the gas generation behavior of crude oils. Org. Geochem. 142, 103965. https://doi.org/10.1016/j.orggeochem.2019.103965 (2020).

    Google Scholar 

  38. Liu, W. M. et al. Superimposed secondary alteration of oil reservoirs. Part II: the characteristics of biomarkers under the superimposed influences of biodegradation and thermal alteration. Fuel 307, 121721. https://doi.org/10.1016/j.fuel.2021.121721 (2022).

    Google Scholar 

  39. Chai, Z. & Chen, Z. H. Biomarkers, light hydrocarbons, and diamondoids of petroleum in deep reservoirs of the Southeast Tabei Uplift, Tarim basin: implication for its origin, alteration, and charging direction. Mar. Pet. Geol. 147, 106019. https://doi.org/10.1016/j.marpetgeo.2022.106019 (2023).

    Google Scholar 

  40. Li, F. et al. The disputes on the source of paleozoic marine oil and gas and the determination of the cambrian system as the main source rocks in Tarim basin. Acta Petrol. Sin. 42, 1417–1436. https://doi.org/10.7623/syxb202111002 (2021).

    Google Scholar 

  41. Liu, Z. et al. The hydrocarbon generation process of the deeply buried cambrian yuertusi formation in the Tabei uplift, Tarim Basin, Northwestern china: constraints from calcite veins hosting oil inclusions in the source rock. Geol. Soc. Am. Bull. 136, 3810–3824. https://doi.org/10.1130/b37295.1 (2024).

    Google Scholar 

  42. Wu, L. et al. Long-lived paleo-uplift controls on Neoproterozoic-Cambrian black shales in the Tarim basin. Mar. Pet. Geol. 155, 106343. https://doi.org/10.1016/j.marpetgeo.2023.106343 (2023).

    Google Scholar 

  43. Wang, S. et al. Genetic mechanism of multiphase States of ordovician oil and gas reservoirs in Fuman oilfield, Tarim Basin, China. Mar. Pet. Geol. 157, 106449. https://doi.org/10.1016/j.marpetgeo.2023.106449 (2023).

    Google Scholar 

  44. Xiao, X. M., Liu, Z. F., Liu, D. H., Shen, J. G. & Fu, J. M. A new method to reconstruct hydrocarbon-generating histories of source rocks in a petroleum-bearing basin – the method of geological and geochemical sections. Chin. Sci. Bull. 45, 35–40. https://doi.org/10.1007/bf02893782 (2000).

    Google Scholar 

  45. Zhan, Z. W., Tian, Y. K., Zou, Y. R., Liao, Z. W. & Peng, P. A. De-convoluting crude oil mixtures from palaeozoic reservoirs in the Tabei Uplift, Tarim Basin, China. Org. Geochem. 97, 78–94. https://doi.org/10.1016/j.orggeochem.2016.04.004 (2016).

    Google Scholar 

  46. Tian, F. et al. Multiscale geological-geophysical characterization of the epigenic origin and deeply buried paleokarst system in Tahe Oilfield, Tarim basin. Mar. Pet. Geol. 102, 16–32. https://doi.org/10.1016/j.marpetgeo.2018.12.029 (2019).

    Google Scholar 

  47. Zhu, G. Y. et al. Hydrocarbon accumulation mechanisms and industrial exploration depth of large-area fracture-cavity carbonates in the Tarim Basin, Western China. J. Petrol. Sci. Eng. 133, 889–907. https://doi.org/10.1016/j.petrol.2015.03.014 (2015).

    Google Scholar 

  48. Zhu, Z. J. et al. Analysis of the filling patterns and reservoir development models of the ordovician paleokarst reservoirs in the Tahe oilfield. Mar. Pet. Geol. 161, 106690. https://doi.org/10.1016/j.marpetgeo.2024.106690 (2024).

    Google Scholar 

  49. Jacob, H. Classification, structure, genesis and practical importance of natural solid oil bitumen (‘migrabitumen’). Int. J. Coal Geol. 11, 65–79. https://doi.org/10.1016/0166-5162(89)90113-4 (1989).

    Google Scholar 

  50. Parnell, J., Monson, B. & Geng, A. Maturity and petrography of bitumens in the carboniferous of Ireland. Int. J. Coal Geol. 29, 23–38. https://doi.org/10.1016/0166-5162(95)00023-2 (1996).

    Google Scholar 

  51. Karweil, J. Die metamorphose der Kohlen vom standpunkt der physikalischen chemie. Z. Dtsch. Geol. Ges. 107, 132–139 (1956).

    Google Scholar 

  52. Liao, Y. H., Geng, A. S. & Huang, H. P. The influence of biodegradation on resins and asphaltenes in the Liaohe basin. Org. Geochem. 40, 312–320. https://doi.org/10.1016/j.orggeochem.2008.12.006 (2009).

    Google Scholar 

  53. Sweeney, J. J. & Burnham, A. K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull. 74, 1559–1570 (1990).

    Google Scholar 

  54. Huang, Y. Y. et al. Improved light hydrocarbons collection method for the pyrolysis of crude oil in gold tube closed system experiments. Org. Geochem. 168, 104432. https://doi.org/10.1016/j.orggeochem.2022.104432 (2022).

    Google Scholar 

  55. Odden, W., Patience, R. L. & van Graas, G. W. Application of light hydrocarbons (C4-C13) to oil/source rock correlations: a study of the light hydrocarbon compositions of source rocks and test fluids from offshore Mid-Norway. Org. Geochem. 28, 823–847. https://doi.org/10.1016/s0146-6380(98)00039-4 (1998).

    Google Scholar 

  56. Leythaeuser, D., Schaefer, R. G., Cornford, C. & Weiner, B. Generation and migration of light hydrocarbons (C2–C7) in sedimentary basins. Org. Geochem. 1, 191–204. https://doi.org/10.1016/0146-6380(79)90022-6 (1979).

    Google Scholar 

  57. Thompson, K. F. M. Classification and thermal history of petroleum based on light hydrocarbons. Geochim. Cosmochim. Acta. 47, 303–316. https://doi.org/10.1016/0016-7037(83)90143-6 (1983).

    Google Scholar 

  58. Dai, J. X. Identification of various alkane gases. Sci. China-Chem‌. 35, 1246–1257 (1992).

    Google Scholar 

  59. ten Haven, H. L. Applications and limitations of Mango’s light hydrocarbon parameters in petroleum correlation studies. Org. Geochem. 24, 957–976. https://doi.org/10.1016/s0146-6380(96)00091-5 (1996).

    Google Scholar 

  60. Mango, F. D. An invariance in the isoheptanes of petroleum. Science 237, 514–517. https://doi.org/10.1126/science.237.4814.514 (1987).

    Google Scholar 

  61. Mango, F. D. The origin of light cycloalkanes in petroleum. Geochim. Cosmochim. Acta. 54, 23–27. https://doi.org/10.1016/0016-7037(90)90191-m (1990).

    Google Scholar 

  62. Mango, F. D. The origin of light hydrocarbons in petroleum: A kinetic test of the steady-state catalytic hypothesis. Geochim. Cosmochim. Acta. 54, 1315–1323. https://doi.org/10.1016/0016-7037(90)90156-f (1990).

    Google Scholar 

  63. Mango, F. D. The origin of light hydrocarbons in petroleum: ring preference in the closure of carbocyclic rings. Geochim. Cosmochim. Acta. 58, 895–901. https://doi.org/10.1016/0016-7037(94)90513-4 (1994).

    Google Scholar 

  64. Mango, F. D. The light hydrocarbons in petroleum: a critical review. Org. Geochem. 26, 417–440. https://doi.org/10.1016/s0146-6380(97)00031-4 (1997).

    Google Scholar 

  65. Akinlua, A., Ajayi, T. R. & Adeleke, B. B. Niger delta oil geochemistry: insight from light hydrocarbons. J. Petrol. Sci. Eng. 50, 308–314. https://doi.org/10.1016/j.petrol.2005.12.003 (2006).

    Google Scholar 

  66. Obermajer, M., Osadetz, K. G., Fowler, M. G. & Snowdon, L. R. Light hydrocarbon (gasoline range) parameter refinement of biomarker-based oil-oil correlation studies: an example from Williston basin. Org. Geochem. 31, 959–976. https://doi.org/10.1016/s0146-6380(00)00114-5 (2000).

    Google Scholar 

  67. Smith, M. & Bend, S. Geochemical analysis and Familial association of red river and Winnipeg reservoired oils of the Williston Basin, Canada. Org. Geochem. 35, 443–452. https://doi.org/10.1016/j.orggeochem.2004.01.008 (2004).

    Google Scholar 

  68. Philippi, G. T. The deep subsurface temperature controlled origin of the gaseous and gasoline-range hydrocarbons of petroleum. Geochim. Cosmochim. Acta. 39, 1353–1373. https://doi.org/10.1016/0016-7037(75)90115-5 (1975).

    Google Scholar 

  69. Thompson, K. F. M. Light hydrocarbons in subsurface sediments. Geochim. Cosmochim. Acta. 43, 657–672. https://doi.org/10.1016/0016-7037(79)90251-5 (1979).

    Google Scholar 

  70. Mackenzie, A. S. & McKenzie, D. Isomerization and aromatization of hydrocarbons in sedimentary basins formed by extension. Geol. Mag. 120, 417–470. https://doi.org/10.1017/s0016756800027461 (1983).

    Google Scholar 

  71. Peters, K. E. & Moldowan, J. M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of Homohopanes in petroleum. Org. Geochem. 17, 47–61. https://doi.org/10.1016/0146-6380(91)90039-m (1991).

    Google Scholar 

  72. Peters, K. E., Walters, C. C. & Moldowan, J. M. The Biomarker Guide (Cambridge University Press, 2005).

  73. van Graas, G. W. Biomarker maturity parameters for high maturities: calibration of the working range up to the oil/condensate threshold. Org. Geochem. 16, 1025–1032. https://doi.org/10.1016/0146-6380(90)90139-q (1990).

    Google Scholar 

  74. Kissin, Y. V. Catagenesis and composition of petroleum: origin of n-alkanes and isoalkanes in petroleum crudes. Geochim. Cosmochim. Acta. 51, 2445–2457. https://doi.org/10.1016/0016-7037(87)90296-1 (1987).

    Google Scholar 

  75. Behar, F., Lorant, F. & Mazeas, L. Elaboration of a new compositional kinetic schema for oil cracking. Org. Geochem. 39, 764–782. https://doi.org/10.1016/j.orggeochem.2008.03.007 (2008).

    Google Scholar 

  76. Chang, C. T., Lee, M. R., Lin, L. H. & Kuo, C. L. Application of C7 hydrocarbons technique to oil and condensate from type III organic matter in Northwestern Taiwan. Int. J. Coal Geol. 71, 103–114. https://doi.org/10.1016/j.coal.2006.06.011 (2007).

    Google Scholar 

  77. Li, F. L. et al. Fault system dynamics and their impact on ordovician carbonate karst reservoirs: outcrop analogs and 3D seismic analysis in the Tabei region, Tarim Basin, NW China. Mar. Pet. Geol. 167, 106923. https://doi.org/10.1016/j.marpetgeo.2024.106923 (2024).

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Jinzhong Liu, Mr. Yong Li, Dr. Zewen Liao, and Dr. Yankuan Tian for their assistance in laboratory analyses. The authors are also grateful to the anonymous reviewers for their constructive suggestions.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42173056 and 42572184), the project Theory of Hydrocarbon Enrichment under Multi-Spheric Interactions of the Earth (Grant No. THEMSIE04010104). This is also a contribution to the Special Fund for the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA14010103).

Author information

Authors and Affiliations

Authors

Contributions

Yuwei Yang: Investigation, Methodology, Formal analysis, Writing-Original Draft; Yuhong Liao: Supervision, Conceptualization, Funding acquisition, Validation, Writing-Reviewing and Editing; Yueyi Huang: Data Curation; Yijun Zheng: Writing-Reviewing and Editing; Bin Cheng: Resources; Huanyu Lin: Visualization; Yunpeng Wang: Project administration, Funding acquisition; Ping’An Peng: Funding acquisition.

Corresponding author

Correspondence to
Yuhong Liao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Yang, Y., Liao, Y., Huang, Y. et al. Thermal evolution of light hydrocarbon fingerprints in biodegraded oils from Ordovician reservoirs, Tabei Uplift, Tarim Basin.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-33256-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-33256-4

Keywords

  • Biodegradation
  • Burial-thermal maturation
  • Light hydrocarbons
  • Ordovician reservoirs
  • Tabei Uplift
  • Tarim Basin


Source: Ecology - nature.com

Experimental analysis of roasted and raw turtle butchery and implications for early human cognition and behaviour

Integrated geographical and ecological analysis reveals environmental drivers of Gardenia jasminoides distribution and chemical variation

Back to Top