in

Warming and resource enhancement shape food webs in South China Sea coral reef system


Abstract

Coral reef ecosystems are being altered by rising ocean temperatures and increasing nutrient inputs, yet their combined influence on food-web structure is not well understood. Here we analyzed 130 coral reef food webs across the South China Sea, constructed from environmental DNA surveys integrated with trophic interactions. We grouped the food webs into surface-water, bottom-water and sediment habitats. Our analyses reveal pronounced structural differences among habitats: surface- and bottom-water webs exhibit significantly higher connectance and nestedness, whereas sediment webs are more compartmentalized. Using linear mixed-effects models, we find that temperature and productivity interact in nonlinear ways to shape food-web properties. In surface waters, higher temperature together with higher productivity tends to increase connectance, whereas in deeper waters the same conditions tend to lengthen trophic pathways and reduce stability. These results suggest that future environmental change may influence pelagic and benthic reef food webs in contrasting ways.

Data availability

The raw sequence data reported in this paper have been deposited in the China National Center for Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences (GSA: CRA018229) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa.

References

  1. Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: what are we missing?. PLoS ONE 6, e25026 (2011).

    Google Scholar 

  2. Wong, A. S., Vrontos, S. & Taylor, M. L. An assessment of people living by coral reefs over space and time. Glob. Change Biol. 28, 7139–7153 (2022).

    Google Scholar 

  3. Souter, D. et al. Status of Coral Reefs of the World: 2020 Report (Global Coral Reef Monitoring Network, 2021).

  4. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Google Scholar 

  5. Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. USA 118, e2015265118 (2021).

    Google Scholar 

  6. Gove, J. M. et al. Coral reefs benefit from reduced land–sea impacts under ocean warming. Nature 621, 536–542 (2023).

    Google Scholar 

  7. Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).

    Google Scholar 

  8. Craig, L. S. et al. Meeting the challenge of interacting threats in freshwater ecosystems: a call to scientists and managers. Elem. Sci. Anthr. 5, 72 (2017).

    Google Scholar 

  9. Hering, D. et al. Managing aquatic ecosystems and water resources under multiple stress-An introduction to the MARS project. Sci. Total Environ. 503-504, 10–21 (2015).

    Google Scholar 

  10. Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).

    Google Scholar 

  11. Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & Woesik, R. V. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).

    Google Scholar 

  12. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Google Scholar 

  13. Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 6097 (2020).

    Google Scholar 

  14. Cook, K. M. et al. A community and functional comparison of coral and reef fish assemblages between four decades of coastal urbanisation and thermal stress. Ecol. Evol. 12, e8736 (2022).

    Google Scholar 

  15. Bourne, D., Iida, Y., Uthicke, S. & Smith-Keune, C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2, 350–363 (2008).

    Google Scholar 

  16. Koester, A. et al. Impacts of coral bleaching on reef fish abundance, biomass and assemblage structure at remote Aldabra Atoll, Seychelles: insights from two survey methods. Front. Mar. Sci. 10, 1230717 (2023).

    Google Scholar 

  17. Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005).

    Google Scholar 

  18. Zhao, H. et al. Impacts of nitrogen pollution on corals in the context of global climate change and potential strategies to conserve coral reefs. Sci. Total Environ. 774, 145017 (2021).

    Google Scholar 

  19. Pozas-Schacre, C. et al. Congruent trophic pathways underpin global coral reef food webs. Proc. Natl. Acad. Sci. USA 118, e2100966118 (2021).

    Google Scholar 

  20. Petchey, O. L., McPhearson, P. T., Casey, T. M. & Morin, P. J. Environmental warming alters food-web structure and ecosystem function. Nature 402, 69–72 (1999).

    Google Scholar 

  21. Rall, B. C., Vucic-Pestic, O., Ehnes, R. B., Emmerson, M. & Brose, U. Temperature, predator–prey interaction strength and population stability. Glob. Change Biol. 16, 2145–2157 (2010).

    Google Scholar 

  22. Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).

    Google Scholar 

  23. Binzer, A., Guill, C., Brose, U. & Rall, B. C. The dynamics of food chains under climate change and nutrient enrichment. Philos. Trans. R. Soc. B 367, 2935–2944 (2012).

    Google Scholar 

  24. Gilbert, B. et al. A bioenergetic framework for the temperature dependence of trophic interactions. Ecol. Lett. 17, 902–914 (2014).

    Google Scholar 

  25. Tunney, T. D., McCann, K. S., Lester, N. P. & Shuter, B. J. Food web expansion and contraction in response to changing environmental conditions. Nat. Commun. 3, 1105 (2012).

    Google Scholar 

  26. Albouy, C. et al. The marine fish food web is globally connected. Nat. Ecol. Evol. 3, 1153–1161 (2019).

    Google Scholar 

  27. Mestre, F. et al. Disentangling food-web environment relationships: a review with guidelines. Basic Appl. Ecol. 61, 102–115 (2022).

    Google Scholar 

  28. Griffiths, J. R. et al. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Glob. Change Biol. 23, 2179–2196 (2017).

    Google Scholar 

  29. Rodil, I. F., Lucena-Moya, P., Tamelander, T., Norkko, J. & Norkko, A. Seasonal variability in benthic–pelagic coupling: quantifying organic matter inputs to the seafloor and benthic macrofauna using a multi-marker approach. Front. Mar. Sci. 7, 404 (2020).

    Google Scholar 

  30. Gerakaris, V. et al. Benthic-pelagic coupling of marine primary producers under different natural and human-induced pressures’ regimes. Front. Mar. Sci. 9, 909927 (2022).

    Google Scholar 

  31. Lesser, M. P. Benthic–pelagic coupling on coral reefs: Feeding and growth of Caribbean sponges. J. Exp. Mar. Biol. Ecol. 328, 277–288 (2006).

    Google Scholar 

  32. O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A. & Bruno, J. F. Warming and resource availability shift food web structure and metabolism. PLoS Biol. 7, e1000178 (2009).

    Google Scholar 

  33. Yvon-Durocher, G. et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biol. 13, e1002324 (2015).

    Google Scholar 

  34. Trombetta, T., Vidussi, F., Roques, C., Scotti, M. & Mostajir, B. Marine microbial food web networks during phytoplankton bloom and non-bloom periods: warming favors smaller organism interactions and intensifies trophic cascade. Front. Mar. Sci. 11, 502336 (2020).

    Google Scholar 

  35. Robinson, J. P. W. et al. Quantifying energy and nutrient fluxes in coral reef food webs. Trends Ecol. Evol. 39, 467–478 (2024).

    Google Scholar 

  36. Carreón-Palau, L., Parrish, C. C., Angel-Rodríguez, J. A. D., Pérez-España, H. & Aguiñiga-García, S. Revealing organic carbon sources fueling a coral reef food web in the Gulf of Mexico using stable isotopes and fatty acids. Limnol. Oceanogr. 58, 593–612 (2013).

    Google Scholar 

  37. Casey, J. M. et al. Reconstructing hyperdiverse food webs: gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10, 1157–1170 (2019).

    Google Scholar 

  38. Choat, J., Clements, K. & Robbins, W. The trophic status of herbivorous fishes on coral reefs. Mar. Biol. 140, 613–623 (2002).

    Google Scholar 

  39. D’Alessandro, S. & Mariani, S. Sifting environmental DNA metabarcoding data sets for rapid reconstruction of marine food webs. Fish. Fish. 22, 822–833 (2021).

    Google Scholar 

  40. Cicala, D. et al. Spatial analysis of demersal food webs through integration of eDNA metabarcoding with fishing activities. Front. Mar. Sci. 10, 1209093 (2024).

    Google Scholar 

  41. Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).

    Google Scholar 

  42. Traugott, M., Thalinger, B., Wallinger, C. & Sint, D. Fish as predators and prey: DNA-based assessment of their role in food webs. J. Fish. Biol. 98, 367–382 (2020).

    Google Scholar 

  43. Xu, Y. et al. Recognizing topological attributes and spatiotemporal patterns in spotted seals (Phoca largha) trophic networks based on eDNA metabarcoding. Front. Mar. Sci. 10, 1305763 (2023).

    Google Scholar 

  44. Marwayana, O. N., Gold, Z., Meyer, C. P. & Barber, P. H. Environmental DNA in a global biodiversity hotspot: lessons from coral reef fish diversity across the Indonesian archipelago. Environ. DNA 4, 222–238 (2022).

    Google Scholar 

  45. Si, Z. et al. Quantifying the temporal dynamics of marine biodiversity under anthropogenic impacts using eDNA metabarcoding. Environ. DNA 7, e70113 (2025).

    Google Scholar 

  46. Maciute, A. et al. Environmental gradients, not geographic boundaries, structure meiofaunal communities in Siberian Seas. Environ. DNA 7, e70124 (2025).

    Google Scholar 

  47. Li, F., Zhang, Y., Altermatt, F., Yang, J. & Zhang, X. Destabilizing effects of environmental stressors on aquatic communities and interaction networks across a major river basin. Environ. Sci. Technol. 57, 7828–7839 (2023).

    Google Scholar 

  48. Gu, S. et al. Assessing riverine fish community diversity and stability by eDNA metabarcoding. Ecol. Indic. 157, 111222 (2023).

    Google Scholar 

  49. Russo, L. et al. Trophic hierarchy in a marine community revealed by network analysis on co-occurrence data. Food Webs 32, e00246 (2022).

    Google Scholar 

  50. Boyse, E. et al. Inferring species interactions from co-occurrence networks with environmental DNA metabarcoding data in a coastal marine food web. Mol. Ecol. 34, e17701 (2025).

    Google Scholar 

  51. Russo, L. et al. From metabarcoding time series to plankton food webs: the hidden role of trophic hierarchy in providing ecological resilience. Mar. Ecol. 44, e12733 (2023).

    Google Scholar 

  52. Shurin, J. B., Gruner, D. S. & Hillebrand, H. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc. R. Soc. B 273, 1–9 (2005).

    Google Scholar 

  53. Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527 (2019).

    Google Scholar 

  54. Skinner, C. et al. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Sci. Adv. 7, eabf3792 (2021).

    Google Scholar 

  55. Eskuche-Keith, P., Hollyman, P., Taylor, M. L. & O’Gorman, E. J. Trophic structuring of modularity alters energy flow through marine food webs. Front. Mar. Sci. 9, 1046150 (2023).

    Google Scholar 

  56. Moore, J. C. et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600 (2004).

    Google Scholar 

  57. Orcutt, B. N. et al. Microbial activity in the marine deep biosphere: progress and prospects. Front. Microbiol. 4, 189 (2013).

    Google Scholar 

  58. Dunlop, K. M. et al. Carbon cycling in the deep eastern North Pacific benthic food web: investigating the effect of organic carbon input. Limnol. Oceanogr. 61, 1956–1968 (2016).

    Google Scholar 

  59. Jonge, D. S. W. D. et al. Abyssal food-web model indicates faunal carbon flow recovery and impaired microbial loop 26 years after a sediment disturbance experiment. Prog. Oceanogr. 189, 102446 (2020).

    Google Scholar 

  60. Mas D. B., Scarabotti P. A., Alvarenga P., Vaschetto P. A., Arim M. Food web structure mediates positive and negative effects of diversity on ecosystem functioning in a large floodplain river. Am. Nat. 206, 115–129 (2025).

  61. Mougi, A. Spatial compartmentation and food web stability. Sci. Rep. 8, 16237 (2018).

    Google Scholar 

  62. Schmitz, O. J. Predator diversity and trophic interactions. Ecology 88, 2415–2426 (2007).

    Google Scholar 

  63. Valdivia, A., Cox, C. E. & Bruno, J. F. Predatory fish depletion and recovery potential on Caribbean reefs. Sci. Adv. 3, e1601303 (2017).

    Google Scholar 

  64. Qiu, Y., Lin, Z. & Wang, Y. Responses of fish production to fishing and climate variability in the northern South China Sea. Prog. Oceanogr. 85, 197–212 (2010).

    Google Scholar 

  65. Smith, J. E., Hunter, C. L. & Smith, C. M. The effects of top-down versus bottom-up control on benthic coral reef community structure. Oecologia 163, 497–507 (2010).

    Google Scholar 

  66. Sentis, A., Hemptinne, J.-L. & Brodeur, J. Towards a mechanistic understanding of temperature and enrichment effects on species interaction strength, omnivory and food-web structure. Ecol. Lett. 17, 785–793 (2014).

    Google Scholar 

  67. Protopapa, M., Zervoudaki, S., Assimakopoulou, G., Velaoras, D. & Koppelmann, R. Mesozooplankton community structure in the Eastern Mediterranean Sea. J. Mar. Syst. 211, 103401 (2020).

    Google Scholar 

  68. Protopapa, M. et al. Trophic positioning of prominent copepods in the epi- and mesopelagic zone of the ultra-oligotrophic eastern Mediterranean Sea. Deep Sea Res. Part II 164, 144–155 (2019).

    Google Scholar 

  69. O’Gorman, E. J., Fitch, J. E. & Crowe, T. P. Multiple anthropogenic stressors and the structural properties of food webs. Ecology 93, 441–448 (2012).

    Google Scholar 

  70. Leclerc, C. et al. Temperature, productivity, and habitat characteristics collectively drive lake food web structure. Glob. Change Biol. 29, 2450–2465 (2023).

    Google Scholar 

  71. Kones, J. K., Soetaert, K., Oevelen, D. V. & Owino, J. O. Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecol. Model. 220, 370–382 (2009).

    Google Scholar 

  72. Thompson, R. M., Hemberg, M., Starzomski, B. M. & Shurin, J. B. Trophic levels and trophic tangles: the prevalence of omnivory in real food webs. Ecology 88, 612–617 (2007).

    Google Scholar 

  73. Barneche, D. R. & Allen, A. P. The energetics of fish growth and how it constrains food-web trophic structure. Ecol. Lett. 21, 836–844 (2018).

    Google Scholar 

  74. Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. USA 106, 12788–12793 (2009).

    Google Scholar 

  75. Lindmark, M., Ohlberger, J., Huss, M. & Gårdmark, A. Size-based ecological interactions drive food web responses to climate warming. Ecol. Lett. 22, 778–786 (2019).

    Google Scholar 

  76. McCauley, D. J. et al. On the prevalence and dynamics of inverted trophic pyramids and otherwise top-heavy communities. Ecol. Lett. 21, 439–454 (2018).

    Google Scholar 

  77. Morais, R. A. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).

    Google Scholar 

  78. Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).

    Google Scholar 

  79. Kordas, R. L., Pawar, S., Kontopoulos, D.-G., Woodward, G. & O’Gorman, E. J. Metabolic plasticity can amplify ecosystem responses to global warming. Nat. Commun. 13, 2161 (2022).

    Google Scholar 

  80. Diehl, S. Paradoxes of enrichment: effects of increased light versus nutrient supply on pelagic producer-grazer systems. Am. Nat. 169, 173–191 (2007).

    Google Scholar 

  81. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, 7240 (2018).

    Google Scholar 

  82. Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).

    Google Scholar 

  83. McWhorter, J. K., Halloran, P. R., Roff, G. & Mumby, P. J. Climate change impacts on mesophotic regions of the Great Barrier Reef. Proc. Natl. Acad. Sci. USA 121, e2303336121 (2024).

    Google Scholar 

  84. Robinson, C. et al. Mesopelagic zone ecology and biogeochemistry-a synthesis. Deep Sea Res. Part II 57, 1504–1518 (2010).

    Google Scholar 

  85. McClain, C. R., Allen, A. P., Tittensor, D. P. & Rex, M. A. Energetics of life on the deep seafloor. Proc. Natl. Acad. Sci. USA 109, 15366–15371 (2012).

    Google Scholar 

  86. Tecchio, S. et al. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea. Deep Sea Res. Part I 75, 1–15 (2013).

    Google Scholar 

  87. Jeunen, G.-J. et al. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol. Ecol. Resour. 19, 426–438 (2019).

    Google Scholar 

  88. Yoccoz, N. G. The future of environmental DNA in ecology. Mol. Ecol. 21, 2031–2038 (2012).

    Google Scholar 

  89. Yang, J. et al. Recent advances in environmental DNA- based biodiversity assessment and conservation. Divers. Distrib. 27, 1876–1879 (2021).

    Google Scholar 

  90. Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. 5, 24 (2018).

    Google Scholar 

  91. Huang, D. et al. Extraordinary diversity of reef corals in the South China Sea. Mar. Biodivers. 45, 157–168 (2015).

    Google Scholar 

  92. Bohmann, K. et al. Strategies for sample labelling and library preparation in DNA metabarcoding studies. Mol. Ecol. Resour. 22, 1231–1246 (2022).

    Google Scholar 

  93. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108, 4516–4522 (2010).

    Google Scholar 

  94. Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).

    Google Scholar 

  95. Zhang, S., Zhao, J. & Yao, M. A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish. Methods Ecol. Evol. 11, 1609–1625 (2020).

    Google Scholar 

  96. Geller, J. B., Meyer, C., Parker, M. & Hawk, H. L. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).

    Google Scholar 

  97. Feng, K. et al. Biodiversity and species competition regulate the resilience of microbial biofilm community. Mol. Ecol. 26, 6170–6182 (2017).

    Google Scholar 

  98. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–122 (2011).

    Google Scholar 

  99. Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    Google Scholar 

  100. Kong, Y. Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98, 152–153 (2011).

    Google Scholar 

  101. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    Google Scholar 

  102. Hoban, M. L., Bunce, M. & Bowen, B. W. Plumbing the depths with environmental DNA (eDNA): Metabarcoding reveals biodiversity zonation at 45–60 m on mesophotic coral reefs. Mol. Ecol. 32, 5590–5608 (2023).

    Google Scholar 

  103. Perry, W. B. et al. An integrated spatio-temporal view of riverine biodiversity using environmental DNA metabarcoding. Nat. Commun. 15, 4372 (2024).

    Google Scholar 

  104. Boettiger, C., Lang, D. T. & Wainwright, P. C. rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish. Biol. 81, 2030–2039 (2012).

    Google Scholar 

  105. Feng, K. et al. iNAP: an integrated network analysis pipeline for microbiome studies. iMeta 1, e13 (2022).

    Google Scholar 

  106. Deng, Y. et al. Molecular ecological network analyses. BMC Bioinform. 13, 113 (2012).

    Google Scholar 

  107. Yuan, M. M. et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–348 (2021).

    Google Scholar 

  108. Csárdi, G. & Nepusz, T. The igraph software. Int. J. Complex Syst. 1695, 1–9 (2006).

    Google Scholar 

  109. Oksanen, J. Vegan: Community Ecology Package. Version 2.6-6.1 (2024).

  110. Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B 364, 1711–1723 (2009).

    Google Scholar 

  111. Burgos, E. et al. Why nestedness in mutualistic networks?. J. Theor. Biol. 249, 307–313 (2007).

    Google Scholar 

  112. Landi, P., Minoarivelo, H. O., Brännström, Å, Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).

    Google Scholar 

  113. Pimiento, C. et al. Functional diversity of sharks and rays is highly vulnerable and supported by unique species and locations worldwide. Nat. Commun. 14, 7691 (2023).

    Google Scholar 

  114. Diamond, J. & Roy, D. Patterns of functional diversity along latitudinal gradients of species richness in eleven fish families. Glob. Ecol. Biogeogr. 32, 450–465 (2023).

    Google Scholar 

  115. Henderson, C. J. et al. Long term declines in the functional diversity of sharks in the coastal oceans of eastern Australia. Commun. Biol. 7, 611 (2024).

    Google Scholar 

  116. Laub, B. G. & Budy, P. Assessing the likely effectiveness of multispecies management for imperiled desert fishes with niche overlap analysis. Conserv. Biol. 29, 1153–1163 (2015).

    Google Scholar 

  117. Neff, F. et al. Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Sci. Adv. 7, eabf3985 (2021).

    Google Scholar 

  118. Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Google Scholar 

  119. Tye, S. P., Fey, S. B., Gibert, J. P. & Siepielski, A. M. Predator mass mortality events restructure food webs through trophic decoupling. Nature 626, 335–340 (2024).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation for Distinguished Young Scholars (42025603), the National Natural Science Foundation of China (No. 42406134), the Qingdao New Energy Shandong Laboratory Open Project (QNESL OP202306), the Ministry of Science and Technology of China (2021YFF0502801), the Postdoctoral Fellowship Program of CPSF (No. GZC20232713). We gratefully thank Ziming Yuan, Xiaoliang Ren, Aiyang Wang, and Lei An for their significant contributions to the sample collection. Sampling was conducted with permission from the Hainan Provincial Government.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed intellectual input and assistance to this study and manuscript preparation. Z.Z.: Conceptualization; Methodology; Formal analysis; Investigation; Visualization; Writing-Original Draft. M.H.: Writing-Review & Editing; J.C.: Writing-Review & Editing; Z.S.: Conceptualization, Funding acquisition, Supervision, Resources.

Corresponding author

Correspondence to
Zhongli Sha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks Barbara Bauer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Nadine Schubert and Alice Drinkwater. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data File 1

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Zhang, Z., Hui, M., Cheng, J. et al. Warming and resource enhancement shape food webs in South China Sea coral reef system.
Commun Earth Environ (2025). https://doi.org/10.1038/s43247-025-03147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43247-025-03147-7


Source: Ecology - nature.com

Conserved genotype-independent rhizobacteria promote maize growth

Tracing social mechanisms and interregional connections in Early Bronze Age Societies in Lower Austria

Back to Top