Abstract
The endosymbiont Wolbachia can both benefit host nutrition and manipulate host reproduction to its own advantage. However, the mechanisms of its nutritional benefits remain unclear. We show that Wolbachia enhances ovarian development in the small brown planthopper Laodelphax striatellus by boosting energy production. Wolbachia-infected females have increased fecundity, accelerated ovarian development, and prolonged oviposition. Enhanced activity of mitochondrial complex I is linked to increased ATP production and the expression of energy metabolism-related genes. We further identify that Wolbachia-synthesized riboflavin is crucial for ATP production and ovarian development. A riboflavin transporter, slc52a3a, positively correlates with Wolbachia density and is required for normal ovarian maturation. Our findings demonstrate that Wolbachia-produced riboflavin drives energy production and accelerates ovarian maturation, thus improving host fecundity. This research reveals insights into symbiont-host metabolic interactions and underscores the role of nutrient delivery in symbiosis.
Data availability
The RNA-seq data generated in this study have been deposited in the NCBI GenBank database under accession code PRJNA1195149, PRJNA1195150, and PRJNA1195152. Source data are provided with this paper.
References
Podsiadło, E., Michalik, K., Michalik, A. & Szklarzewicz, T. Yeast-like microorganisms in the scale insect Kermes quercus (Insecta, Hemiptera, Coccomorpha: Kermesidae). Newly acquired symbionts?. Arthropod Struct. Dev. 47, 56–63 (2018).
Mathé-Hubert, H., Kaech, H., Ganesanandamoorthy, P. & Vorburger, C. Evolutionary costs and benefits of infection with diverse strains of Spiroplasma in pea aphids. Evolution 73, 1466–1481 (2019).
Paniagua Voirol, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front. Microbiol. 9, 556 (2018).
Pina, T. et al. Molecular characterization of Cardinium, Rickettsia, Spiroplasma and Wolbachia in mite species from citrus orchards. Exp. Appl. Acarol. 81, 335–355 (2020).
Porter, J. & Sullivan, W. The cellular lives of Wolbachia. Nat. Rev. Microbiol. 21, 750–766 (2023).
Serbus, L. R., Casper-Lindley, C., Landmann, F. & Sullivan, W. The genetics and cell biology of Wolbachia-host interactions. Annu. Rev. Genet. 42, 683–707 (2008).
Newton, I. L. G. & Rice, D. W. The Jekyll and Hyde symbiont: could Wolbachia be a nutritional mutualist? J. Bacteriol. 202, e00589–19 (2020).
Zug, R. & Hammerstein, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol. Rev. 90, 89–111 (2015).
Brownlie, J. C. et al. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5, e1000368 (2009).
Unckless, R. L. & Jaenike, J. Maintenance of a male-killing Wolbachia in Drosophila innubila by male-killing dependent and male-killing independent mechanisms. Evolution 66, 678–689 (2012).
Dedeine, F. et al. Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc. Natl. Acad. Sci. USA. 98, 6247–6252 (2001).
Pannebakker, B. A., Loppin, B., Elemans, C. P. H., Humblot, L. & Vavre, F. Parasitic inhibition of cell death facilitates symbiosis. Proc. Natl. Acad. Sci. USA. 104, 213–215 (2007).
Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X.-Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. USA. 107, 769–774 (2010).
Ju, J.-F. et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 14, 676–687 (2020).
Moriyama, M., Nikoh, N., Hosokawa, T. & Fukatsu, T. Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. mBio 6, e01732–01715 (2015).
Depeint, F., Bruce, W. R., Shangari, N., Mehta, R. & O’Brien, P. J. Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem. Biol. Interact. 163, 94–112 (2006).
Zhao, R.-Z., Jiang, S., Zhang, L. & Yu, Z.-B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 44, 3–15 (2019).
Noda, H., Koizumi, Y., Zhang, Q. & Deng, K. Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem. Mol. Biol. 31, 727–737 (2001).
Huang, H.-J., Cui, J.-R., Chen, J., Bing, X.-L. & Hong, X.-Y. Proteomic analysis of Laodelphax striatellus gonads reveals proteins that may manipulate host reproduction by Wolbachia. Insect Biochem. Mol. Biol. 113, 103211 (2019).
Bing, X.-L., Zhao, D.-S., Peng, C.-W., Huang, H.-J. & Hong, X.-Y. Similarities and spatial variations of bacterial and fungal communities in field rice planthopper (Hemiptera: Delphacidae) populations. Insect Sci 27, 947–963 (2020).
Duan, X.-Z. et al. Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations. Microbiome 8, 104 (2020).
Hu, Q.-L. et al. Chromosome-level assembly, dosage compensation and sex-biased gene expression in the small brown planthopper, Laodelphax striatellus. Genome Biol. Evol. 14, evac160 (2022).
Jin, C. et al. Riboflavin transporters RFVT/SLC52A mediate translocation of riboflavin, rather than FMN or FAD, across plasma membrane. Biol. Pharm. Bull. 40, 1990–1995 (2017).
Gnainsky, Y. et al. Systemic regulation of host energy and oogenesis by microbiome-derived mitochondrial coenzymes. Cell Rep. 34, 108583 (2021).
Li, T.-P. et al. Stable establishment of Cardinium spp. in the brown planthopper Nilaparvata lugens despite decreased host fitness. Appl. Environ. Microbiol. 86, e02509–19 (2020).
Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, gix120 (2018).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014).
R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2024).
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J. Integr. Biol. 16, 284–287 (2012).
Golbach, J. L., Chalova, V. I., Woodward, C. L. & Ricke, S. C. Adaptation of Lactobacillus rhamnosus riboflavin assay to microtiter plates. J. Food Compos. Anal. 20, 568–574 (2007).
Pan, X., Lu, K., Qi, S., Zhou, Q. & Zhou, Q. The content of amino acids in artificial diet influences the development and reproduction of brown planthopper, Nilaparvata lugens (STÅL). Arch. Insect Biochem. Physiol. 86, 75–84 (2014).
Li, T.-P. et al. Two newly introduced Wolbachia endosymbionts induce cell host differences in competitiveness and metabolic responses. Appl. Environ. Microbiol. 87, e0147921 (2021).
Jiang, W. & Zhu, T. F. Targeted isolation and cloning of 100-kb microbial genomic sequences by Cas9-assisted targeting of chromosome segments. Nat. Protoc. 11, 960–975 (2016).
Mendiburu, F. D. & Simon, R. Agricolae – ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ Prepr. 3, e1404v1401 (2015).
Acknowledgements
We thank Prof. Fei-Rong Ren from Henan University, Dr. Xiang Sun and Tianyu Wang from Shenyang Agricultural University for their technical and material support in riboflavin detection experiments. We also thank Hao Zhang from Nanjing Agricultural University for his help in preparing RNA-seq samples. This work was supported by the Key Research and Development Project of Hainan Province (ZDYF2024XDNY249 to X.Y.H.), the National Natural Science Foundation of China (32572809 to X.L.B. and 32020103011 to X.Y.H.), and the Young Elite Scientists Sponsorship Program by Jiangsu Association for Science and Technology (TJ-2023-038 to X.L.B.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
The authors contributed to the present study as follows: Y.D.N., X.L.B., and X.Y.H. designed the research; Y.D.N., Q.H.F., Z.H.W., M.K.W., D.S.Z., M.R.W., B.X.W., and X.L.B. performed the research and analyzed the data; Y.D.N., X.L.B., and X.Y.H. wrote and edited the manuscript; all authors read and approved the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Descriptions of Additional Supplementary Files
Supplementary Data 1
Supplementary Data 2
Supplementary Data 3
Supplementary Data 4
Reporting Summary
Transparent Peer Review file
Source data
Source Data file
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Niu, YD., Fan, QH., Wang, ZH. et al. Wolbachia enhances ovarian development in the rice planthopper Laodelphax striatellus through elevated energy production.
Nat Commun (2025). https://doi.org/10.1038/s41467-025-67660-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467-025-67660-1
Source: Ecology - nature.com
