in

Climate-driven habitat shifts And niche overlap of overexploited trees Cordia africana Lam. and Terminalia brownii Fresen in Ethiopia


Abstract

Cordia africana and Terminalia brownii, indigenous Ethiopian multipurpose trees of high ecological and socioeconomic value, are increasingly threatened by overexploitation and climate change. Understanding how climatic and anthropogenic factors shape their distribution is critical for sustainable management and conservation. This study identified key environmental drivers, predicted suitable habitats under current and future climates, and assessed shifts in distribution, geographic range, and niche overlap. Future climate projections were assessed under two scenarios: the medium-emission scenario (SSP2-4.5) and the high-emission scenario (SSP5-8.5), for two time horizons: the 2050s and 2070s. An ensemble modeling framework was applied using seven algorithms: boosted regression trees, random forest, generalized linear model, generalized additive model, maximum entropy, support vector machine, and multivariate adaptive regression splines. Each model was run with ten sub-sampled replicates. We evaluated model performance using the area under the curve (AUC) for C. africana (0.84) and T. brownii (0.82), and the true skill statistic (TSS), which was 0.60 for both species. Predicted suitable habitat for C. africana (20.1%) was concentrated in the western, central, and southwestern regions, while T. brownii (19.9%) was mainly distributed in the northern, eastern, and southeastern lowlands. Under future climate scenarios, suitable areas are projected to decline sharply, shrinking to 8.68% and 2.07% of Ethiopia’s land area, respectively, by the 2070s. Suitable habitats for both species are expected to contract, with potential refugia for C. africana shifting toward highland areas. Geographic and environmental overlap between the two species was minimal. Given their multipurpose use, increasing vulnerability, and limited niche and geographic overlap, our results show that the projected habitat contraction, the marked decline of T. brownii within its natural range, and the upslope shift of C. africana refugia require species-specific conservation actions. C. africana needs refugia protection and climate-adapted management, while T. brownii requires targeted measures to support its long-term viability. Conservation efforts should focus on safeguarding existing habitats, regulating harvesting, strengthening community-based forest management, and maintaining ecological connectivity. Both species will also require stricter control of human use under future climate change.

Data availability

The data supporting the findings of this study are available in the supplementary material.

References

  1. van Wyk, A. S. & Prinsloo, G. A review of the ethnobotanical uses, pharmacology, toxicology, management and cultivation of selected South African protected multi-purpose tree species. South. Afr. J. Bot. 124, 258–269 (2019).

    Google Scholar 

  2. Thorn, J. P. R., Thornton, T. F., Helfgott, A. & Willis, K. J. Indigenous uses of wild and tended plant biodiversity maintain ecosystem services in agricultural landscapes of the Terai Plains of Nepal. J. Ethnobiol. Ethnomed. 16, 1–25 (2020).

  3. Allegrini, A. et al. Multipurpose plant species and circular economy: Corylus Avellana L. as a study case. Front. Biosci. – Landmark. 27, 1–20 (2022).

    Google Scholar 

  4. Sarvade, S., Gautam, D. S., Bhalawe, S. & Bisen, P. K. An overview of potential multipurpose agroforestry tree species, syzygium cuminii (L.) Skeels in India. J. Appl. Nat. Sci. 8, 1714–1719 (2016).

    Google Scholar 

  5. Lelamo, L. L. A review on the Indigenous multipurpose agroforestry tree species in ethiopia: management, their productive and service roles and constraints. Heliyon 7, e07874 (2021).

    Google Scholar 

  6. Biru, K. H. & Cheru, U. Management and ecological services of multipurpose agroforestry tree species in Ethiopia. Review. Veg. Crop Russ. 82–87. https://doi.org/10.18619/2072-9146-2025-1-82-87 (2025).

  7. Alemayehu, G. et al. Cordia Africana (Boraginaceae) in ethiopia: A review on its taxonomy, distribution, ethnobotany and conservation status. Int. J. Bot. Stud. 1, 38–46 (2016).

    Google Scholar 

  8. Lameso, L. & Bekele, W. Farmers local knowledge on niche Selection, management strategies and uses of cordia Africana tree in agroforestry practices of Sidama Zone, Southern Ethiopia. Am. J. Agric. For. 8, 258 (2020).

    Google Scholar 

  9. Sarah, T. B. Ferric reducing antioxidant power and total phenols in cordia Africana fruit. Afr. J. Biochem. Res. 7, 215–224 (2013).

    Google Scholar 

  10. Abdella, M., Nigatu, L. & Akuma, A. Impact of parkland trees (Faidherbia albida delile and cordia Africana Lam) impact of parkland trees (Faidherbia albida delile and cordia Africana Lam) on selected soil properties and sorghum yield in Eastern Oromia, Ethiopia. Agric. Fish. 9, 61–73 (2020).

    Google Scholar 

  11. Luvanda, M., Kamau, N., Uchi, M., Bala, P. & Okeyo, M. M. Domestication of terminalia Brownii among smallholder farmers in Eastern kenya: A double hurdle approach. J. Econ. Sustain. Dev. 10, 61–69 (2019).

    Google Scholar 

  12. Christopher, N. K., Alert, M. L. & Sylvia, M. U. Determinants of distribution and utilization of terminalia Brownii (Fresen) in Eastern Kenya. J. Dryl Agric. 7, 42–51 (2021).

    Google Scholar 

  13. Ayalew, A. et al. Community practices and conservation concerns: a study on the utilization and management of Terminalia brownii in Amhara Region, Ethiopia. Discov. Agric. 3, 1–15 (2025).

  14. Handiso, M. A. et al. Farmers’ perceptions of terminalia Brownii management in agroforestry parklands and its impact on soil physicochemical properties in the South Ari District, Southern Ethiopia. Agrofor. Syst. 99, 1–16 (2025).

    Google Scholar 

  15. Hedberg, I., Kelbessa, E., Edwards, S., Demissew, S. & Persson, E. Flora of Ethiopia and Ertirea, Gentianaceae to Cyclocheilaceae. (2006).

  16. Edwards, S., Tadesse, M. & Hedberg, I. Flora of Ethiopia and eritraea 2 part 2. Canellaceae to euphorbiaceae. Kew Bulletin 2 (1995).

  17. Maranz, S. Tree mortality in the African Sahel indicates an anthropogenic ecosystem displaced by climate change. J. Biogeogr. 36, 1181–1193 (2009).

    Google Scholar 

  18. Derero, A., Gailing, O. & Finkeldey, R. Maintenance of genetic diversity in cordia Africana Lam., a declining forest tree species in Ethiopia. Tree Genet. Genomes. 7, 1–9 (2011).

    Google Scholar 

  19. Lemage, B., Hegano, A., Tesfaye, A. & Ayele, M. Evaluation of leaf litter nutrient composition, decomposition and releasing potential of Cordia africana, Terminalia brownii and, Vitex doniana tree species. J. Agric. Aquac. 4, 1–6 (2022).

  20. Gogol-Prokurat, M. Predicting habitat suitability for rare plants at local Spatial scales using a species distribution model. Ecol. Appl. 21, 33–47 (2011).

    Google Scholar 

  21. Bania, J. K. et al. Modelling habitat suitability for Moringa Oleifera and Moringa stenopetala under current and future climate change scenarios. Sci. Rep. 13, 1–16 (2023).

    Google Scholar 

  22. Hosseini, N., Ghorbanpour, M. & Mostafavi, H. Habitat potential modelling and the effect of climate change on the current and future distribution of three thymus species in Iran using maxent. Sci. Rep. 14, 1–14 (2024).

    Google Scholar 

  23. Heide, F. & Zur Feasibility study for a lake Tana biosphere Reserve, Ethiopia. Deutschland/Bundesamt für Naturschutz (2012).

  24. Belay, B. et al. Woody species diversity and coffee production in remnant semi-natural dry Afromontane forest in Zegie Peninsula, Ethiopia. Agrofor. Syst. 93, 1793–1806 (2019).

    Google Scholar 

  25. Kindu, M. et al. State of the Art in Ethiopian Church Forests and Restoration Options. State of the Art in Ethiopian Church Forests and Restoration Options. https://doi.org/10.1007/978-3-030-86626-6 (2022).

  26. Bloom, T. D. S., Flower, A. & Dechaine, E. G. Why georeferencing matters: introducing a practical protocol to prepare species occurrence records for Spatial analysis. Ecol. Evol. 8, 765–777 (2018).

    Google Scholar 

  27. Brown, J. L. & SDMtoolbox A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5, 694–700 (2014).

    Google Scholar 

  28. Guisan, A. et al. Making better biogeographical predictions of species’ distributions. J. Appl. Ecol. 43, 386–392 (2006).

    Google Scholar 

  29. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km Spatial resolution climate surfaces for global land areas. Int. J. Climatol. https://doi.org/10.1002/joc.5086 (2017).

    Google Scholar 

  30. Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: with Applications in R (Cambridge University Press, 2017).

  31. Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling ? Ecography (Cop). 37, 191–203 (2014).

    Google Scholar 

  32. Michaelides, S. Modes of Atmospheric Energetics Based on HadGEM3-GC3.1-LL Simulations in the Framework of CMIP6. Adv. Meteorol. (2023). (2023).

  33. Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications : an overview. Glob Environ. Chang. 42, 153–168 (2017).

    Google Scholar 

  34. Linyucheva, l. & kindlmann, p. a review of global land cover maps in terms of their potential use for habitat suitability modelling. Eur. J. Environ. Sci. 11, 46–61 (2021).

    Google Scholar 

  35. Hijmans, R. J. & Elith, J. Spatial Distribution Models. (CRC Press, 2019).

  36. Meynard, C. N. & Quinn, J. F. Predicting species distributions: A critical comparison of the most common statistical models using artificial species. J. Biogeogr. 34, 1455–1469 (2007).

    Google Scholar 

  37. Santini, L., Benítez-López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. J. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 27, 1035–1050 (2021).

    Google Scholar 

  38. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    Google Scholar 

  39. Wang, L., Sawada, K. & Moriguchi, S. Landslide susceptibility mapping by using logistic regression model with neighborhood analysis: A case study in Mizunami City. Int. J. GEOMATE. 1, 99–104 (2011).

    Google Scholar 

  40. Kaky, E., Nolan, V., Alatawi, A. & Gilbert, F. A comparison between ensemble and maxent species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inf. 60, 101150 (2020).

    Google Scholar 

  41. Hastie, T., Tibshirani, R. & Friedman, J. The elements of statistical Learning; data Mining, Inference, and Prediction, second edition. Springer Ser. Stat. https://doi.org/10.2307/j.ctv15r5dgv.9 (2009).

    Google Scholar 

  42. Merow, C. et al. What do we gain from simplicity versus complexity in species distribution models? Ecography (Cop). 37, 1267–1281 (2014).

    Google Scholar 

  43. Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    Google Scholar 

  44. Naimi, B., Araújo, M. B. & Sdm A reproducible and extensible R platform for species distribution modelling. Ecography (Cop). 39, 368–375 (2016).

    Google Scholar 

  45. Nzei, J. M. et al. Assessment of climate change and land use effects on water Lily (Nymphaea L.) habitat suitability in South America. Diversity 14, 1–15 (2022).

    Google Scholar 

  46. Junjun, Z. et al. An insight into machine learning algorithms to map the occurrence of the soil Mattic horizon in the Northeastern Qinghai-Tibetan plateau. Pedosphere 28, 739–750 (2018).

    Google Scholar 

  47. Shabani, S., Pourghasemi, H. R. & Blaschke, T. Forest stand susceptibility mapping during harvesting using logistic regression and boosted regression tree machine learning models. Glob Ecol. Conserv. 22, e00974 (2020).

    Google Scholar 

  48. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning Data Mining, Inference, and Prediction. Springer Series in Statistics vol. 1 (2009).

  49. Radosavljevic, A. & Anderson, R. P. Making better maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).

    Google Scholar 

  50. Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Google Scholar 

  51. Melese, D., Woldu, Z., Asfaw, Z. & Warkineh, B. Predicting the invasion potential of two alien plant species (Parthenium hysterophorus L., Asteraceae and salvia tiliifolia Vahl, Lamiaceae) under the current and future climate change scenarios in Ethiopia. Ecol. Process. 14, 1–25. https://doi.org/10.1186/s13717-025-00626-9 (2025).

    Google Scholar 

  52. Dormann, C. F. et al. Model averaging in ecology: a review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecol. Monogr. 88, 485–504 (2018).

    Google Scholar 

  53. Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography (Cop). 28, 385–393 (2005).

    Google Scholar 

  54. Jimenez-Valverde, A. & Lobo, J. M. Threshold criteria for conversion of probability of species presence to either – or presence – absence. Acta Oecol. 31, 361–369 (2007).

    Google Scholar 

  55. Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).

    Google Scholar 

  56. Fordham, D. A. et al. Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? Glob Chang. Biol. 18, 1357–1371 (2012).

    Google Scholar 

  57. Rödder, D. & Engler, J. O. Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Glob Ecol. Biogeogr. 20, 915–927 (2011).

    Google Scholar 

  58. Zhou, Y., Lu, X. & Zhang, G. Potentially differential impacts on niche overlap between Chinese endangered Zelkova Schneideriana and its associated tree species under climate change. Front. Ecol. Evol. 11, 1–18 (2023).

    Google Scholar 

  59. Krämer, A., Meyer, H. & Buchholz, S. Habitat suitability of the sand Lizard (Lacerta agilis) at its distribution Limit—An analysis based on citizen science data and machine learning. J. Biogeogr. 52, 1–15 (2025).

    Google Scholar 

  60. Arau, M. B. & Mark, N. Ensemble forecasting of species distributions. TRENDS Ecol. Evol. 22, 43–47 (2007).

  61. Parker, W. S. Ensemble modeling, uncertainty and robust predictions. WIREs Clim. Chang. 4, 213–223 (2013).

    Google Scholar 

  62. Morris, W. F., Ehrlén, J., Dahlgren, J., Loomis, A. K. & Louthan, A. M. Biotic and anthropogenic forces rival climatic/abiotic factors in determining global plant population growth and fitness. Proc. Natl. Acad. Sci. U S A. 117, 1107–1112 (2020).

    Google Scholar 

  63. Negash, L. A Selections of Ethiopia’s Indigenous Trees Biology, Uses and Propagation Techinques. (2010).

  64. Okeyo, M. M., Obwoyere, G. O., Makanji, D. L., Njuguna, J. W. & Atieno, J. Promotion of terminalia Brownii in reforestation by development of appropriate dormancy breaking and germination methods in drylands; Kenya. Glob Ecol. Conserv. 23, e01148 (2020).

    Google Scholar 

  65. Martyniak, L. Response of spring cereals to a deficit of atmospheric precipitation in the particular stages of plant growth and development. Agric. Water Manag. 95, 171–178 (2008).

    Google Scholar 

  66. Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).

    Google Scholar 

  67. Ahuja, L. R., Reddy, V. R., Saseendran, S. A. & Yu, Q. Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes. Response Crops Ltd. Water: Underst. Model. Water Stress Eff. Plant. Growth Processes. https://doi.org/10.2134/advagricsystmodel1 (2015).

    Google Scholar 

  68. Bhattacharya, A. Soil water deficit and physiological issues in plants. Soil. Water Deficit Physiological Issues Plants. https://doi.org/10.1007/978-981-33-6276-5 (2021).

    Google Scholar 

  69. Khurana, E. & Singh, J. S. Khurana 2001. 28, 39–52 (2001).

  70. Gaviria, J., Turner, B. L. & Engelbrecht, B. M. J. Drivers of tree species distribution across a tropical rainfall gradient. Ecosphere 8, (2017).

  71. Sadok, W., Lopez, J. R. & Smith, K. P. Transpiration increases under high-temperature stress: potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant. Cell. Environ. 44, 2102–2116 (2021).

    Google Scholar 

  72. Scafaro, A. P. et al. Responses of leaf respiration to heatwaves. Plant. Cell. Environ. 44, 2090–2101 (2021).

    Google Scholar 

  73. Wasonowati, C., Sulistyaningsih, E., Indradewa, D. & Kurniasih, B. Morphophysiology and the yield of two types of moringa (Moringa oleifera Lamk) cultivated in two different regions in Madura. IOP Conf. Ser. Earth Environ. Sci. 250, 1–8 (2019).

  74. Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019. (2019).

  75. Inderjit, Catford, J. A., Kalisz, S., Simberloff, D. & Wardle D. A. A framework for Understanding human-driven vegetation change. Oikos 126, 1687–1698 (2017).

    Google Scholar 

  76. Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. U. S. A. 102, 8245–8250 (2005).

  77. Lawler, J. J. Climate change adaptation strategies for resource management and conservation planning. Ann. N Y Acad. Sci. 1162, 79–98 (2009).

    Google Scholar 

  78. Thuiller, W. et al. Predicting global change impacts on plant species ’ distributions: future challenges. Perspect. Plant. Ecol. Evol. Syst. 9, 137–152 (2008).

    Google Scholar 

  79. Broennimann, O. et al. Measuring ecological niche overlap from occurrence and Spatial environmental data. Glob Ecol. Biogeogr. 21, 481–497 (2012).

    Google Scholar 

  80. Pearman, P. B., D’Amen, M., Graham, C. H., Thuiller, W. & Zimmermann, N. E. Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography (Cop). 33, 990–1003 (2010).

    Google Scholar 

  81. GBIF.org. GBIF Occurrence Download. https://doi.org/10.15468/dl.q948ma 10 March (2025).

  82. GBIF.org. GBIF Occurrence Download. https://doi.org/10.15468/dl.bu66vu 11 March (2025).

  83. Freeman, E. A., Moisen, G. G., Coulston, J. W. & Wilson, B. T. Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance. Can. J. Res. 46, 323–339 (2015).

    Google Scholar 

  84. Guisan, A., Edwards, T. C. & Hastie, T. Effect of boundary layer conductance on the response of stomata to humidity. Plant. Cell. Environ. 157, 89–100 (2002).

    Google Scholar 

  85. Ravindra, K., Rattan, P., Mor, S. & Aggarwal, A. N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int. 132, 104987 (2019).

    Google Scholar 

  86. Perkins-Taylor, I. E. & Frey, J. K. Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): comparing maxent and occupancy models. J. Mammal. 101, 1035–1048 (2020).

    Google Scholar 

  87. Elith, J. & Leathwick, J. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers. Distrib. 13, 265–275 (2007).

    Google Scholar 

  88. Booth, T. H. Forest ecology and management species distribution modelling tools and databases to assist managing forests under climate change. Ecol. Manage. 430, 196–203 (2018).

    Google Scholar 

  89. Franklin, J. Species distribution modelling supports the study of past, present and future biogeographies. J. Biogeogr. 50, 1533–1545 (2023).

    Google Scholar 

  90. Guisan, A. & Thuiller, W. Predicting species distribution : offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Google Scholar 

  91. Melese, D., Lemessa, D., Abebe, M., Hailegiorgis, T. & Nemomissa, S. Modelling the distribution of Ekebergia capensis sparrm. (Meliaceae) under the current and future climate change scenarios in Ethiopia. BMC Ecol. Evol. 25, 1–14. https://doi.org/10.1186/s12862-025-02437-0 (2025).

    Google Scholar 

  92. Tadesse, Z., Nemomissa, S. & Lemessa, D. Predicting the distributions of Pouteria adolfi- ­ friederici and Prunus africana tree species under current and future climate change scenarios in Ethiopia. 204–216. https://doi.org/10.1111/aje.13103 (2023).

  93. Hailegiorgis, T. Modeling the Spatiotemporal Habitat Suitability Distributions of Cultural Keystone Bidens macroptera (Adey Abeba) Under Climate Change Scenarios in Ethiopia. 1–15. https://doi.org/10.1002/ece3.72115 (2025).

  94. Thuiller, W., Georges, D., Engler, R., Breiner, F. & Georges, M. D. Package ‘biomod2’. Species Distrib. Model. Within Ensemble Forecast. Framew. 10, 587–1600 (2016).

    Google Scholar 

  95. Friis, I., Demissew, S. & van Breugel, P. Atlas of the potential vegetation of Ethiopia. Annals Botany 107 (2011).

  96. SOLLINS, P. & FACTORS INFLUENCING SPECIES COMPOSITION IN TROPICAL LOWLAND RAIN FOREST: DOES SOIL MATTER ? Ecology 79, 23–30 (1998).

    Google Scholar 

  97. Melese, D., Aligaz, M. A. & Seid, A. A. Invasion potential of Calotropis procera (Aiton) W. T. Aiton and Xanthium strumarium L. in the anthropocene of Ethiopia : implications for management. Ecol. Evol. 15, 1–16. https://doi.org/10.1002/ece3.72577 (2025).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Plant Biology and Biodiversity Management for providing research facilities and the herbarium expert for identifying the specimen and facilitating access to the herbarium specimens used in this study.

Funding

There are no funding resources for this study.

Author information

Authors and Affiliations

Authors

Contributions

D.M. was involved in data collection, compilation, methodology, modeling, analyzing the output, and drafting the manuscript. M.A., A.A., A.T., Y.M., and Y.Y. contributed to data collection and manuscript writing. We would like to clarify that the work presented here is original research that has not previously been published and is not under consideration for publication elsewhere, in whole or in part. All authors participated in revising and approved the final manuscript.

Corresponding author

Correspondence to
Daniel Melese.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Melese, D., Asnakew, M., Awoke, A. et al. Climate-driven habitat shifts And niche overlap of overexploited trees Cordia africana Lam. and Terminalia brownii Fresen in Ethiopia.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-33743-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-33743-8

Keywords

  • Anthropogenic
  • Conservation
  • Ensemble model
  • Multipurpose trees


Source: Ecology - nature.com

Extreme temperature events reshuffle the ecological landscape of the Southern Ocean

Enhancing crayfish sex identification with Kolmogorov-Arnold networks and stacked autoencoders

Back to Top