in

Effect of incorporating bone char with sulfur or humic acid on phosphorus availability and spinach growth in calcareous sandy soil


Abstract

This study investigated the effects of applying modified bone char by sulfur (MBC) with humic acid and co-applying bone char (BC) with sulfur (S) or humic acid (HA) on chemical properties, phosphorus (P) availability, and spinach growth in calcareous sandy soil. This pot experiment has twelve treatments: Control (CK), bone + S (BS), bone + HA (BHA), BC + S (BCS), BC + HA (BCHA), MBC, MBC + HA (MBCHA), acidified BC with 0.1 N H2SO4 (0.1ABC), acidified BC with 1 N H2SO4 (1ABC), rock phosphate (RP), RP + S (RPS), and RP + HA (RPHA). The B, BC, MBC, 0.1ABC, 1ABC, and RP were added at 300 mg P kg− 1 soil doses. Spinach was grown in this experiment. Applying all treatments significantly increased soil phosphorus availability. Available phosphorus increased from 11.61 mg kg− 1 (CK) to 19.70, 19.76, 21.82, 22.25, 22.45, 26.09, 19.58, 21.01, 15.26, 18.95, and 17.77 mg kg− 1 for BS, BHA, BCS, BCHA, MBC, MBCHA, 0.1ABC, 1ABC, RP, RPS, and RPHA, respectively. The effectiveness of the treatments in this study on the available phosphorus improvement was in the order of MBCHA > MBC > BCHA > BCS > 1ABC > BHA > BS > 0.1ABC > RPS > RPHA > RP > control. Compared to the control treatment, applying BHA, BCS, BCHA, MBC, MBCHA, 1ABC, RPS, and RPHA to the soil significantly increased the fresh shoot of the spinach plant. Fresh shoot of spinach increased from 46.02 g pot− 1 for CK to 54.41, 54.36, 56.94, 50.39, 51.91, 48.83, 54.24, and 49.52 g pot− 1 for BHA, BCS, BCHA, MBC, MBCHA, 1ABC, RPS, and RPHA, respectively. The effectiveness of treatments in improving the fresh weight of spinach was in the order of BCHA > BHA ≈ BCS > RPS > MBCHA > MBC > RPHA > 1ABC > control > RP > BS > 0.1ABC. Our results concluded that co-applying bone char with sulfur is optimal for enhancing soil quality indicators and improving fresh and dry shoots of spinach. Due to its cheaper price, it is preferable to add sulfur with bone char rather than humic acid.

Similar content being viewed by others

Optimizing phosphorus released in calcareous soil amended with bone char and bone ash using response surface methodology and desirability function

Minimization of cadmium toxicity and improvement in growth and biochemical attributes of spinach by using acidified biochar

Alleviation of soil acidification and modification of soil bacterial community by biochar derived from water hyacinth Eichhornia crassipes

Data availability

The datasets used or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

0.1ABC:

Acidified BC with 0.1 N H2SO4

1ABC:

Aacidified BC with 1 N H2SO4

B:

Bone

BHA:

Bone + humic acid

BS:

Bone + sulfur

BC:

Bone char

BCHA:

Bone char + humic acid

BCS:

Bone char + sulfur

C:

Carbon

Ca:

Calcium

CaCO3
:

Calcium carbonate

CK:

Control

Cl:

Chloride

EC:

Electrical conductivity

H:

Hydrogen

H2O2
:

Hydrogen peroxide

H2SO4
:

Sulfuric Acid

ha:

Hectare

HA:

Humic acid

HCl:

Hydrochloric acid

HCO3
:

Bicarbonate

K:

Potassium

MBC:

Modified bone char

MBCHA:

Modified bone char + humic acid

Mg:

Magnesium

N:

Nitrogen

Na:

Sodium

NaOH:

Sodium hydroxide

O.M:

Organic matter

P:

Phosphorus

p:

Probability

RP:

Rock phosphate

RPHA:

Rock phosphate + humic acid

RPS:

Rock phosphate + sulfur

S:

Sulfur

SO4
:

Sulfate

References

  1. Tshikalange, B., Ololade, O., Jonas, C. & Bello, Z. A. Effectiveness of cattle Dung biogas digestate on spinach growth and nutrient uptake. Heliyon 8, e09195. https://doi.org/10.1016/j.heliyon.2022.e09195 (2022).

    Google Scholar 

  2. Yavuz, D. et al. The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions. Sci. Hortic. 304, 111272. https://doi.org/10.1016/j.scienta.2022.111272 (2022).

    Google Scholar 

  3. Toledo, M. E. A., Ueda, Y., Imahori, Y. & Ayaki, M. L-ascorbic acid metabolism in spinach (Spinacia Oleracea L.) during postharvest storage in light and dark. Postharvest. Biol. Technol. 28, 47–57. https://doi.org/10.1016/S0925-5214(02)00121-7 (2003).

    Google Scholar 

  4. Ismail, A., Marjan, Z. M. & Foong, C. W. Total antioxidant activity and phenolic content in selected vegetables. J. Food Chem. 87, 581–586. https://doi.org/10.1016/j.foodchem.2004.01.010 (2004).

    Google Scholar 

  5. Miri, S. M. & Roughani, A. Spinach: an important green leafy vegetable and medicinal herb. The 2nd International Conference on Medicinal Plants, Organic Farming, Natural and Pharmaceutical Ingredients, Iran; Moshad: 13–14 February. (2019).

  6. Kiran, R. S., Bathool, S., Geetha, K., Sharma, G. S. & Rao, T. R. A review on spinacia Oleracea. Indian J. Res. 12, 90–92 (2023).

    Google Scholar 

  7. Zhu, J., Li, M. & Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci. Total Environ. 612, 522–537. https://doi.org/10.1016/j.scitotenv.2017.08.095 (2018).

  8. Gupta, D. K., Chatterjee, S., Datta, S., Veer, V. & Walther, C. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 108, 134–144. https://doi.org/10.1016/j.chemosphere.2014.01.030 (2014).

    Google Scholar 

  9. Li, B., Boiarkina, I., Young, B., Yu, W. & Singhal, N. Prediction of future phosphate rock: A demand based model. J. Environ. Inf. 31, 41–53. https://doi.org/10.3808/jei.201700364 (2018).

    Google Scholar 

  10. Attallah, M. F., Metwally, S. S., Moussa, S. I. & Soliman, M. A. Environmental impact assessment of phosphate fertilizers and phosphogypsum waste: elemental and radiological effects. Mierochem. J. 146, 789–797 (2019).

    Google Scholar 

  11. Mozhiarasi, V. & Natarajan, T. S. Slaughterhouse and poultry wastes: management practices, feedstocks for renewable energy production, and recovery of value added products. Biomass Conv. Bioref.. https://doi.org/10.1007/s13399-022-02352-0 (2022).

    Google Scholar 

  12. Piccirillo, C. Preparation, characterisation and applications of bone char, a food waste-derived sustainable material: A review. J. Environ. Manag. 339, 117896. https://doi.org/10.1016/j.jenvman.2023.117896 (2023).

    Google Scholar 

  13. Heyl, K., Garske, B. & Ekardt, F. Using bone Char as phosphate recycling fertiliser: an analysis of the new EU fertilising products regulation. Environ. Sci. Europe. 35, 1–13. https://doi.org/10.1186/s12302-023-00819-z (2023).

    Google Scholar 

  14. Boskey, A. L. Mineralization of bones and teeth. Elements 3, 385–391. https://doi.org/10.2113/GSELEMENTS.3.6.385 (2007).

    Google Scholar 

  15. Simons, A., Solomon, D., Chibssa, W., Blalock, G. & Lehmann, J. Filling the phosphorus fertilizer gap in developing countries. Nat. Geosci. 7, 3. https://doi.org/10.1038/ngeo2049 (2014).

    Google Scholar 

  16. Amin, A. A. & Sulfur Na2-EDTA and their mixture effects on phosphorus release from cow bone Char in P-poor sandy soil. Environ. Technol. Innov. 17, 100636. https://doi.org/10.1016/j.eti.2020.100636 (2020).

    Google Scholar 

  17. Amin, A. A. Enhancement of releasing phosphorus from bone Char in calcareous sandy soil under applying different levels of water salinity. J. Soil. Sci. Plant. Nutr. 21, 476–486. https://doi.org/10.1007/s42729-020-00376-x (2021).

    Google Scholar 

  18. Glæsner, N., Hansen, H. C. B., Hu, Y., Bekiaris, G. & Bruun, S. Low crystalline apatite in bone Char produced at low temperature ameliorates phosphorus-deficient soils. Chemosphere 223, 723–730. https://doi.org/10.1016/j.chemosphere.2019.02.048 (2019).

    Google Scholar 

  19. Siebers, N. & Leinweber, P. Bone char-a clean and renewable fertilizer with cadmium immobilizing capability. J. Environ. Qual. 42, 405–411. https://doi.org/10.2134/jeq2012.0363 (2013).

    Google Scholar 

  20. Vassilev, N., Martos, E., Mendes, G., Martos, V. & Vassileva, M. Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity? J. Sci. Food Agric. 93, 1799–1804. https://doi.org/10.1002/jsfa.6130 (2013).

    Google Scholar 

  21. Miao, C. & Zeller, V. Nutrient circularity from waste to fertilizer: A perspective from LCA studies. Sci. Total Environ. 965, 178623. https://doi.org/10.1016/j.scitotenv.2025.178623 (2025).

    Google Scholar 

  22. Biswas, P. P. et al. Systematic changes of bone hydroxyapatite along a charring temperature gradient: an integrative study with dissolution behavior. Sci. Total Environ. 766, 142601. https://doi.org/10.1016/j.scitotenv.2020.142601 (2021).

    Google Scholar 

  23. Amin, A. A. Effects of pyrolysis temperatures on bone Char Characterization and its releasing phosphorus in sandy soil. Arch. Agron. Soil. Sci. 69, 304–313. https://doi.org/10.1080/03650340.2021.1988940 (2023).

    Google Scholar 

  24. Kroetsch, D. & Wang, C. Particle size distribution in Soil Sampling and Methods of Analysis (eds Carter, M. R. & Gregorich, E. G.) 713–726 (Boca Raton, CRC, (2008).

    Google Scholar 

  25. Pansu, M. & Gautheyrou, J. Handbook of Soil Analysis (Springer, 2006).

  26. Skjemstad, J. O., Baldock, J. A. & Total and organic carbon in Soil sampling and methods of analysis (eds. Carter, M. R. & Gregorich, E. G.) 225–237Boca Raton, CRC Press, (2008).

  27. Jackson, M. L. Soil Chemical analysis. (New Delhi (Prentice-Hall of India Private Limited, 1973).

  28. Baruah, T. C., Barthakur, H. & India P. A textbook of soil analysis. (New Delhi, Vikas Publishing House PVT LTD, (1997).

  29. Nagornyy, V. D. Soil and Plant Laboratory Analysis (Moscow, Peoples’ Friendship University of Russia, 2013).

  30. Keeney, D. R. & Nelson, D. W. Madison SSSA,. Nitrogen-inorganic forms In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, Agronomy Series No 9, ASA, 2nd edn (ed. Page, A. L.) 643–698 (1982).

  31. Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. (Circular/United States Department of Agriculture, No. 939,1954).

  32. Grimshaw, H. M. Analysis of soils in Chemical Analysis of Ecological Materials, 2nd edn (ed. Allen, 7–45 (Blackwell, Oxford, (1989).

    Google Scholar 

  33. Parkinson, J. A. & Allen, S. E. A wet oxidation procedure for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil. Sci. Plant. Anal. 6, 1–11. https://doi.org/10.1080/00103627509366539 (1975).

    Google Scholar 

  34. Amin, A. A. & Eissa, M. A. Biochar effects on nitrogen and phosphorus use efficiencies of zucchini plants grown in a calcareous sandy soil. J. Soil. Sci. Plant. Nutr. 17, 912–921. https://doi.org/10.4067/S0718-95162017000400006 (2017).

    Google Scholar 

  35. Baligar, V., Fageria, N. & He, Z. Nutrient use efficiency in plants. Commun. Soil. Sci. Plant. Anal. 32, 921–950. https://doi.org/10.1081/CSS-100104098 (2001).

    Google Scholar 

  36. Li, S. et al. Phosphorus fertilizer management for high yields in intensive winter wheat-summer maize rotation system: integrating phosphorus budget and soil available phosphorus. Field Crops Res. 313, 109410. https://doi.org/10.1016/j.fcr.2024.109410 (2024).

    Google Scholar 

  37. Zimmer, D., Panten, K., Frank, M., Springer, A. & Leinweber, P. Sulfur-enriched bone Char as alternative P fertilizer: Spectroscopic, wet Chemical, and yield response evaluation. Agriculture 9, 21. https://doi.org/10.3390/agriculture9010021 (2019).

    Google Scholar 

  38. Amin, A. A. Availability and transformations of phosphorus in calcareous sandy soil affected by farmyard manure and elemental sulfur applications. Alex Sci. Exch. J. 39, 98–111. https://doi.org/10.21608/ASEJAIQJSAE.2018.5795 (2018).

    Google Scholar 

  39. Soaud, A. A. et al. Effects of elemental sulfur, phosphorus, micronutrients and paracoccus versutus on nutrient availability of calcareous soils. Aust J. Crop Sci. 5, 554–561 (2011).

    Google Scholar 

  40. Jaggi, R. C., Aulakh, M. S. & Sharma, A. R. Impacts of elemental S applied under various temperature and moisture regimes on pH and available P in acidic, neutral and alkaline soils. Biol. Fertil. Soils. 41, 52–58. https://doi.org/10.1007/s00374-004-0792-9 (2005).

    Google Scholar 

  41. Ampong, K., Thilakaranthna, M. S. & Gorim, L. Y. Understanding the role of humic acids on crop performance and soil health. Front. Agron. 4, 848621. https://doi.org/10.3389/fagro.2022.848621 (2022).

    Google Scholar 

  42. Li, Y. et al. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-48620-4 (2019).

    Google Scholar 

  43. Penn, C. J. & Camberato, J. J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9, 120. https://doi.org/10.3390/agriculture9060120 (2019).

    Google Scholar 

  44. Yang, Z. et al. Elemental sulfur oxidation by Thiobacillus spp. And aerobic heterotrophic sulfur-oxidizing bacteria. Pedosphere 20, 71–79. https://doi.org/10.1016/S1002-0160(09)60284-8 (2010).

    Google Scholar 

  45. Cifuentes, F. R. & Lindemann, W. C. Organic matter stimulation of elemental sulfur oxidation in a calcareous soil. Soil. Sci. Soc. Am. J. 57, 727–731. https://doi.org/10.2136/sssaj1993.03615995005700030017x (1993).

    Google Scholar 

  46. Wakweya, T. et al. Long-term effects of bone Char and lignocellulosic biochar-based soil amendments on phosphorus adsorption–desorption and crop yield in low-input acidic soils. Soil. Use Manage. 38, 703–713. https://doi.org/10.1111/sum.12757 (2022).

    Google Scholar 

  47. Jia, H. et al. Effects of different forms of sulfur on plant growth and soil properties in cadmium-contaminated soils. J. Soil. Sci. Plant. Nutr. 24, 2706–2721. https://doi.org/10.1007/s42729-024-01695-z (2024).

    Google Scholar 

  48. Kulczycki, G. The effect of elemental sulfur fertilization on plant yields and soil properties. Adv. Agron. 167, 105–181. https://doi.org/10.1016/bs.agron.2020.12.003 (2020).

    Google Scholar 

  49. El-Fahdawi, W. A. T., Ahmed, F. W. & Cheyed, S. H. Effect of agricultural sulfur on availability of NPK in soil, growth and yield of corn (Zea Mays L). Indian J. Ecol. 47, 200–205 (2020).

    Google Scholar 

  50. Warren, G. P., Robinson, J. S. & Someus, E. Dissolution of phosphorus from animal bone Char in 12 soils. Nutr. Cycl. Agroecosyst. 84, 167–178. https://doi.org/10.1007/s10705-008-9235-6 (2009).

    Google Scholar 

  51. Wahba, M. M., Bahna, F. L. & Amal, M. A. Improving the availability of phosphorus from rock phosphate in calcareous soils by natural materials. Bioscience Res. 15, 1796–1804 (2018).

    Google Scholar 

  52. El Refaey, A. A., Mohamed, N. A., Mostafa, H. E. & Gouda, N. A. Performance of fast and slow phosphorus release from nano-bone Char. Egypt. J. Soil. Sci. 62, 223–235. https://doi.org/10.21608/ejss.2022.151212.1519 (2022).

    Google Scholar 

  53. El-Kholy, A. M., Ali, O. M., El-Sikhry, E. M. & Mohamed, A. I. Effect of sulphur application on the availability of some nutrients in Egyptian soils. Egypt. J. Soil. Sci. 53, 361–377. https://doi.org/10.21608/ejss.2013.173 (2013).

    Google Scholar 

  54. Du, Z. et al. Movement of phosphorus in a calcareous soil as affected by humic acid. Pedosphere 23, 229–235. https://doi.org/10.1016/S1002-0160(13)60011-9 (2013).

    Google Scholar 

  55. Wang, X. J., Wang, Z. Q. & Li, S. G. The effect of humic acids on the availability of phosphorus fertilizers in alkaline soils. Soil. Use Manage. 11, 99–102. https://doi.org/10.1111/j.1475-2743.1995.tb00504.x (1995).

    Google Scholar 

  56. Jing, J. et al. Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-74349-6 (2020).

    Google Scholar 

  57. Yang, F. et al. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility. Commun. Angew Chem. Int. Ed. 58, 18813–18816. https://doi.org/10.1002/anie.201911060 (2019).

    Google Scholar 

  58. Xiong, Q. et al. The effective combination of humic acid phosphate fertilizer regulating the form transformation of phosphorus and the chemical and microbial mechanism of its phosphorus availability. Agronomy 13, 1581. https://doi.org/10.3390/agronomy13061581 (2023).

    Google Scholar 

  59. Bayata, A. & Mulatu, G. Effect of bone Char application on soil quality, soil enzyme and in enhancing crop yield in agriculture: A review. Am. J. Chem. Eng. 12, 13–28. https://doi.org/10.11648/j.ajche.20241202.11 (2024).

    Google Scholar 

  60. Azeem, M. et al. Effects of sheep bone Biochar on soil quality, maize growth, and fractionation and phytoavailability of cd and Zn in a mining-contaminated soil. Chemosphere 282, 131016. https://doi.org/10.1016/j.chemosphere.2021.131016 (2021).

    Google Scholar 

  61. Ayas, H. & Gulser, F. The effects of sulfur and humic acid on yield components and macronutrient contents of spinach (Spinacia Oleracea Var. Spinoza). J. Biol. Sci. 5, 801–804 (2005). https://scialert.net/abstract/?doi=jbs.2005.801.804

    Google Scholar 

  62. Singh, D. P., Gulpadiya, V. K., Chauhan, R. S. & Singh, S. P. Effect of sulphur on productivity, economics and nutrient uptake in spinach. Annals Plant. Soil. Res. 17, 29–32 (2015).

    Google Scholar 

  63. Alsudays, I. M. et al. Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC Plant. Biol. 24, 191. https://doi.org/10.1186/s12870-024-04863-6 (2024).

    Google Scholar 

  64. Sun, S. et al. Evidence for phosphorus cycling parity in nodulating and non-nodulating N2-fixing pioneer plant species in glacial primary succession. Funct. Ecol. 39, 985–1000. https://doi.org/10.1111/1365-2435.70023 (2025).

    Google Scholar 

  65. Jalpa, L., Mylavarapu, R. S., Hochmuth, G. J., Wright, A. L. & van Santen, E. Apparent recovery and efficiency of nitrogen fertilization in tomato grown on sandy soils. HortTechnology 30, 204–211. https://doi.org/10.21273/HORTTECH04480-19 (2020).

    Google Scholar 

  66. Assefa, S., Haile, W. & Tena, W. Effects of phosphorus and sulfur on yield and nutrient uptake of wheat (Triticum aestivum L.) on vertisols, North central. Ethiopia Heliyon. 7, e06614. https://doi.org/10.1016/j.heliyon.2021.e06614 (2021).

    Google Scholar 

  67. Liu, D. et al. The crop phosphorus uptake, use efficiency, and budget under long-term manure and fertilizer application in a rice–wheat planting system. Agriculture 14, 1393. https://doi.org/10.3390/agriculture14081393 (2024).

    Google Scholar 

  68. Zicker, T., von Tucher, S., Kavka, M. & Eichler-Löbermann, B. Soil test phosphorus as affected by phosphorus budgets in two long-term field experiments in Germany. Field Crops Res. 218, 158–170. https://doi.org/10.1016/j.fcr.2018.01.008 (2018).

    Google Scholar 

  69. Cao, N. et al. Change in soil available phosphorus in relation to the phosphorus budget in China. Nutr. Cycl. Agroecosyst. 94, 161–170. https://doi.org/10.1007/s10705-012-9530-0 (2012).

    Google Scholar 

  70. Castro, G. F. et al. Bone char: characterization and agronomic application as an alternative source of phosphorus. Rev. Bras. Cienc. Solo. 48, e0230165. https://doi.org/10.36783/18069657rbcs20230165 (2024).

    Google Scholar 

  71. Jia, Y., Siebers, N., Panten, K. & Kruse, J. Fate and availability of phosphorus from bone Char with and without sulfur modification in soil size fractions after five-year field fertilizations. Soil. Tillage Res. 231, 105720. https://doi.org/10.1016/j.still.2023.105720 (2023).

    Google Scholar 

  72. Siebers, N., Godlinski, F. & Leinweber, P. The phosphorus fertilizer value of bone char for potatoes, wheat, and onions: First results. Landbauforsch vTI Agric. For. Res. 62, 59–64. https://d-nb.info/10238 (2012).

Download references

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Author information

Authors and Affiliations

Authors

Contributions

Abu El-Eyuoon Abu Zied Amin and Adel R.A. Usman conceived the idea and designed the experiment. Abdallah M. Barakat performed the experiment, collected, and analyzed the data. Abu El-Eyuoon Abu Zied Amin and Abdallah M. Barakat wrote the manuscript. The results of this study are discussed by Abu El-Eyuoon Abu Zied Amin. Adel R.A. Usman and Nadia M. K. Roshdy revised the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to
Abu El-Eyuoon Abu Zied Amin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods, experimental research, and pot studies on plants complied with relevant institutional, national, and international guidelines and legislation.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Barakat, A.M., Usman, A.R.A., Amin, A.EE.A.Z. et al. Effect of incorporating bone char with sulfur or humic acid on phosphorus availability and spinach growth in calcareous sandy soil.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-29041-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-29041-y

Keywords

  • Bone char
  • Humic acid
  • Modified bone char
  • Spinach
  • Sulfur
  • Sustainable agriculture


Source: Ecology - nature.com

Patellar shape diversity as a functional indicator of locomotor specialization in selected ruminant species

Integrating feature selection and explainable CNN for identification and classification of pests and beneficial insects

Back to Top