in

Integrating microbial siderophores into concepts of plant iron nutrition


Abstract

Iron is a crucial micronutrient for plants, but its availability in soil is often limited. Iron deficiency compromises plant growth, and low iron content in crops contributes substantially to the ‘hidden hunger’ that affects human health globally. The elucidation of Strategy I (reduction-based) and Strategy II (phytosiderophore-based) for iron acquisition was a milestone in plant biology and enabled the development of biofortification concepts. However, recent genetic evidence reveals that the boundary between the two strategies is blurred, with many plants possessing elements of both. Here we show that plant iron uptake mechanisms are more complex and diverse than the classical dichotomy suggests. We review evidence for this integrative view and highlight the critical role of microbial siderophores. We explain how plants access iron from microbial siderophores not only indirectly through Strategy I and II pathways but also via the direct uptake of iron–siderophore complexes, an overlooked mechanism that we introduce as Strategy III. We propose three potential routes for this direct uptake and conclude that harnessing Strategy III holds great potential for novel agricultural interventions to enhance iron biofortification and improve human health.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones in the discovery of molecular and physiological mechanisms underlying plant iron absorption.
Fig. 2: Strategy I and II iron uptake mechanisms in plants and their partial co-occurrence in select species.
Fig. 3: Phylogenetic distribution and functional traits of plant iron-promoting microorganisms.
Fig. 4: Proposed mechanisms of how plants can use microbial siderophores for iron acquisition, including the emerging Strategy III.

Similar content being viewed by others

Biofortification’s contribution to mitigating micronutrient deficiencies

Spatial IMA1 regulation restricts root iron acquisition on MAMP perception

Functional mutants of Azospirillum brasilense elicit beneficial physiological and metabolic responses in Zea mays contributing to increased host iron assimilation

References

  1. Andrews, S. C., Robinson, A. K. & Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  2. Ponka, P., Tenenbein, M. & Eaton, J. W. in Handbook on the Toxicology of Metals (eds Nordberg G. F. et al.) 879–902 (Elsevier, 2015).

  3. Lauderdale, J. M., Braakman, R., Forget, G., Dutkiewicz, S. & Follows, M. J. Microbial feedbacks optimize ocean iron availability. Proc. Natl Acad. Sci. USA 117, 4842–4849 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  4. Colombo, C., Palumbo, G., He, J.-Z., Pinton, R. & Cesco, S. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J. Soils Sediments 14, 538–548 (2014).

    Article 
    CAS 

    Google Scholar 

  5. Zuo, Y. & Zhang, F. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339, 83–95 (2011).

    Article 
    CAS 

    Google Scholar 

  6. Vélez-Bermúdez, I. C. & Schmidt, W. Plant strategies to mine iron from alkaline substrates. Plant Soil 483, 1–25 (2023).

    Article 

    Google Scholar 

  7. Cronin, S. J. F., Woolf, C. J., Weiss, G. & Penninger, J. M. The role of iron regulation in immunometabolism and immune-related disease. Front. Mol. Biosci. 6, 116 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  8. Weffort, V. R. S. & Lamounier, J. A. Hidden hunger—a narrative review. J. Pediatr. (Rio J.) 100, S10–S17 (2024).

    Article 
    PubMed 

    Google Scholar 

  9. Jurkevitch, E. et al. Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the HarvestPlus program. Nutr. Rev. 62, 247–252 (2004).

    Article 

    Google Scholar 

  10. Röhmeld, V. & Marschner, H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 80, 175–180 (1986).

    Article 

    Google Scholar 

  11. Santi, S. & Schmidt, W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. N. Phytol. 183, 1072–1084 (2009).

    Article 
    CAS 

    Google Scholar 

  12. Robinson, N. J., Procter, C. M., Connolly, E. L. & Guerinot, M. L. A ferric-chelate reductase for iron uptake from soils. Nature 397, 694–697 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  13. Vert, G. et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14, 1223–1233 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  14. Curie, C. et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409, 346–349 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  15. Bashir, K. et al. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J. Biol. Chem. 281, 32395–32402 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  16. Nozoye, T. et al. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J. Biol. Chem. 286, 5446–5454 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  17. Durrett, T. P., Gassmann, W. & Rogers, E. E. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol. 144, 197–205 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  18. Yokosho, K., Yamaji, N., Ueno, D., Mitani, N. & Ma, J. F. OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol. 149, 297–305 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  19. Kim, S. A. et al. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314, 1295–1298 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  20. Bashir, K. et al. The rice mitochondrial iron transporter is essential for plant growth. Nat. Commun. 2, 322 (2011).

    Article 
    PubMed 

    Google Scholar 

  21. Ling, H. Q., Bauer, P., Bereczky, Z., Keller, B. & Ganal, M. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc. Natl Acad. Sci. USA 99, 13938–13943 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  22. Colangelo, E. P. & Guerinot, M. L. The essential basic helix–loop–helix protein FIT1 is required for the iron deficiency response. Plant Cell 16, 3400–3412 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  23. Yuan, Y. et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res. 18, 385–397 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  24. Ogo, Y. et al. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J. 51, 366–377 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  25. Wang, S. et al. A transcription factor OsbHLH156 regulates Strategy II iron acquisition through localising IRO2 to the nucleus in rice. N. Phytol. 225, 1247–1260 (2020).

    Article 
    CAS 

    Google Scholar 

  26. Li, X., Zhang, H., Ai, Q., Liang, G. & Yu, D. Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in Arabidopsis thaliana. Plant Physiol. 170, 2478–2493 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  27. Jakoby, M., Wang, H.-Y., Reidt, W., Weisshaar, B. & Bauer, P. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett. 577, 528–534 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  28. Zhang, H., Li, Y., Yao, X., Liang, G. & Yu, D. POSITIVE REGULATOR OF IRON HOMEOSTASIS1, OsPRI1, facilitates iron homeostasis. Plant Physiol. 175, 543–554 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  29. Kobayashi, T. et al. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc. Natl Acad. Sci. USA 104, 19150–19155 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  30. Grillet, L., Lan, P., Li, W., Mokkapati, G. & Schmidt, W. IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nat. Plants 4, 953–963 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  31. Selote, D., Samira, R., Matthiadis, A., Gillikin, J. W. & Long, T. A. Iron-binding E3 ligase mediates iron response in plants by targeting Basic Helix–Loop–Helix transcription factors. Plant Physiol. 167, 273–286 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  32. Salahudeen, A. A. et al. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 326, 722–726 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  33. Vashisht, A. A. et al. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326, 718–721 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  34. Long, T. et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22, 2219–2236 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  35. Stacey, M. G. et al. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol. 146, 323–324 (2008).

    Article 

    Google Scholar 

  36. Li, Y. et al. IRON MAN interacts with BRUTUS to maintain iron homeostasis in Arabidopsis. Proc. Natl Acad. Sci. USA 118, e2109063118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  37. Kumar, R. K. et al. Iron-nicotianamine transporters are required for proper long distance iron signaling. Plant Physiol. 175, 1254–1268 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  38. Brown, J. C. & Jolley, V. D. Strategy I and strategy II mechanisms affecting iron availability to plants may be established too narrow or limited. J. Plant Nutr. 11, 1077–1098 (1988).

    Article 
    CAS 

    Google Scholar 

  39. Martín-Barranco, A., Thomine, S., Vert, G. & Zelazny, E. A quick journey into the diversity of iron uptake strategies in photosynthetic organisms. Plant Signal. Behav. 16, 1975088 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  40. Chao, Z. & Chao, D. Similarities and differences in iron homeostasis strategies between graminaceous and nongraminaceous plants. N. Phytol. 236, 1655–1660 (2022).

    Article 
    CAS 

    Google Scholar 

  41. Ishimaru, Y. et al. Rice plants take up iron as an Fe 3+ -phytosiderophore and as Fe 2+. Plant J. 45, 335–346 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  42. Zuo, Y. M., Zhang, F. S., Li, X. L. & Cao, Y. P. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil. Plant Soil 220, 13–25 (2000).

    Article 
    CAS 

    Google Scholar 

  43. Zuo, Y., Li, X., Cao, Y., Zhang, F. & Christie, P. Iron nutrition of peanut enhanced by mixed cropping with maize: possible role of root morphology and rhizosphere microflora. J. Plant Nutr. 26, 2093–2110 (2003).

    Article 
    CAS 

    Google Scholar 

  44. Guo, X. et al. Dynamics in the rhizosphere and iron-uptake gene expression in peanut induced by intercropping with maize: role in improving iron nutrition in peanut. Plant Physiol. Biochem. 76, 36–43 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  45. Dai, J. et al. From Leguminosae/Gramineae intercropping systems to see benefits of intercropping on iron nutrition. Front. Plant Sci. 10, 605 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  46. Xiong, H. et al. Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil. Plant Cell Environ. 38, 1888–1902 (2013).

    Article 

    Google Scholar 

  47. He, R. et al. SIDERITE: unveiling hidden siderophore diversity in the chemical space through digital exploration. iMeta 3, e192 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  48. Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637–657 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  49. Kramer, J., Özkaya, Ö & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  50. Masalha, J., Kosegarten, H., Elmaci, O. & Mengel, K. The central role of microbial activity for iron acquisition in maize and sunflower. Biol. Fertil. Soils 30, 433–439 (2000).

    Article 
    CAS 

    Google Scholar 

  51. Rroço, E., Kosegarten, H., Harizaj, F., Imani, J. & Mengel, K. The importance of soil microbial activity for the supply of iron to sorghum and rape. Eur. J. Agron. 19, 487–493 (2003).

    Article 

    Google Scholar 

  52. Jin, C. W., He, Y. F., Tang, C. X., Wu, P. & Zheng, S. J. Mechanisms of microbially enhanced Fe acquisition in red clover (Trifolium pratense L.). Plant Cell Environ. 29, 888–897 (2006).

    Article 
    PubMed 

    Google Scholar 

  53. Wang, N. et al. Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize. Nat. Commun. 15, 839 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  54. Gu, S. et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat. Microbiol. 5, 1002–1010 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  55. Singh, D. et al. Prospecting endophytes from different Fe or Zn accumulating wheat genotypes for their influence as inoculants on plant growth, yield, and micronutrient content. Ann. Microbiol. 68, 815–833 (2018).

    Article 
    CAS 

    Google Scholar 

  56. Vansuyt, G., Robin, A., Briat, J. F., Curie, C. & Lemanceau, P. Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol. Plant Microbe Interact. 20, 441–447 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  57. Trapet, P. et al. The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol. 171, 675–693 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  58. Avoscan, L. et al. Iron status and root cell morphology of Arabidopsis thaliana as modified by a bacterial ferri-siderophore. Physiol. Plant. 176, e14223 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  59. Shirley, M., Avoscan, L., Bernaud, E., Vansuyt, G. & Lemanceau, P. Comparison of iron acquisition from Fe–pyoverdine by strategy I and strategy II plants. Botany 89, 731–735 (2011).

    Article 
    CAS 

    Google Scholar 

  60. Omidvari, M., Sharifi, R. A., Ahmadzadeh, M. & Dahaji, P. A. Role of fluorescent pseudomonads siderophore to increase bean growth factors. J. Agric. Sci. 2, 242–247 (2010).

    Google Scholar 

  61. Braun, V. & Killmann, H. Bacterial solutions to the iron-supply problem. Trends Biochem. Sci. 24, 104–109 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  62. Robin, A. et al. in Advances in Agronomy, Vol. 99 (ed. Sparks D. L.) 183–225 (Elsevier, 2008).

  63. Crowley, D. E., Wang, Y. C., Reid, C. P. P. & Szaniszlo, P. J. Mechanisms of iron acquisition from siderophores by microorganisms and plants. Front. Microbiol. 130, 179–198 (1991).

    CAS 

    Google Scholar 

  64. Rai, V., Fisher, N., Duckworth, O. W. & Baars, O. Extraction and detection of structurally diverse siderophores in soil. Front. Microbiol. 11, 581508 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  65. Harbort, C. J. et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28, 825–837 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  66. Johnson, G. V., Lopez, A. & Foster, N. L. Reduction and transport of Fe from siderophores—reduction of siderophores and chelates and uptake and transport of iron by cucumber seedlings. Plant Soil 241, 27–33 (2002).

    Article 
    CAS 

    Google Scholar 

  67. Yehuda, Z., Shenker, M., Hadar, Y. & Chen, Y. Remedy of chlorosis induced by iron deficiency in plants with the fungal siderophore rhizoferrin. J. Plant Nutr. 23, 1991–2006 (2000).

    Article 
    CAS 

    Google Scholar 

  68. Bienfait, H. F. Prevention of stress in iron metabolism of plants. Acta Bot. Neerl. 38, 105–129 (1989).

    Article 
    CAS 

    Google Scholar 

  69. Boukhalfa, H. & Crumbliss, A. Chemical aspects of siderophore mediated iron transport. Biometals 15, 325–339 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  70. Jin, C. W., Ye, Y. Q. & Zheng, S. J. An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann. Bot. 113, 7–18 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  71. Yehuda, Z. et al. The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants. Plant Physiol. 112, 1273–1280 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  72. Jurkevitch, E., Hadar, Y., Chen, Y., Chino, M. & Mori, S. Indirect utilization of the phytosiderophore mugineic acid as an iron source to rhizosphere fluorescent Pseudomonas. Biometals 6, 119–123 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  73. Ahmed, E. & Holmström, S. J. M. Siderophores in environmental research: roles and applications. Microb. Biotechnol. 7, 196–208 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  74. Nishizawa, N. & Mori, S. Invagination of plasmalemma: its role in the absorption of macromolecules in rice roots. Plant Cell Physiol. 18, 767–782 (1977).

    Google Scholar 

  75. Mori, S. Iron acquisition by plants. Curr. Opin. Plant Biol. 2, 250–253 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  76. Singh, P., Kumar, R., Khan, A., Singh, A. & Srivastava, A. Bacillibactin siderophore induces iron mobilisation responses inside aerobic rice variety through YSL15 transporter. Rhizosphere 27, 100724 (2023).

    Article 

    Google Scholar 

  77. Singh, P. et al. In silico analysis of comparative affinity of phytosiderophore and bacillibactin for iron uptake by YSL15 and YSL18 receptors of Oryza sativa. J. Biomol. Struct. Dyn. 41, 2733–2746 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  78. Murata, Y. et al. A specific transporter for iron(III)–phytosiderophore in barley roots. Plant J. 46, 563–572 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  79. Chen, L. M., Dick, W. A. & Streeter, J. G. Production of aerobactin by microorganisms from a compost enrichment culture and soybean utilization. J. Plant Nutr. 23, 2047–2060 (2000).

    Article 
    CAS 

    Google Scholar 

  80. Dahhan, D. A. & Bednarek, S. Y. Advances in structural, spatial, and temporal mechanics of plant endocytosis. FEBS Lett. 596, 2269–2287 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  81. Hayat, R. et al. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms. Sci. Adv. 4, eaar4536 (2018).

    Article 

    Google Scholar 

  82. Diggle, S. P. et al. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem. Biol. 14, 87–96 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  83. Lin, J. et al. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat. Commun. 8, 14888 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  84. Chaney, R. L., Brown, J. C. & Tiffin, L. O. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 50, 208–213 (1972).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  85. Eide, D., Broderius, M., Fett, J. & Guerinot, M. L. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl Acad. Sci. USA 93, 5624–5628 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  86. Rodríguez-Celma, J. et al. Root responses of Medicago truncatula plants grown in two different iron deficiency conditions: changes in root protein profile and riboflavin biosynthesis. J. Proteome Res. 10, 2590–2601 (2011).

    Article 
    PubMed 

    Google Scholar 

  87. Rodriguez-Celma, J. et al. Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol. 162, 1473–1485 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  88. Fourcroy, P. et al. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. N. Phytol. 201, 155–167 (2014).

    Article 
    CAS 

    Google Scholar 

  89. Schmid, N. B. et al. Feruloyl-CoA 6′-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol. 164, 160–172 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  90. Schmidt, H. et al. Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PLoS ONE 9, e102444 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  91. Rajniak, J. et al. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat. Chem. Biol. 14, 442–450 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  92. Robe, K. et al. Coumarin-facilitated iron transport: an IRT1-independent strategy for iron acquisition in Arabidopsis thaliana. Plant Commun. 6, 101431 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  93. Takagi, S. Naturally occurring iron-chelating compounds in oat- and rice-root washings. J. Soil Sci. Plant Nutr. 22, 423–433 (1976).

    Article 
    CAS 

    Google Scholar 

  94. Takagi, S., Nomoto, K. & Takemoto, T. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr. 7, 469–477 (1984).

    Article 
    CAS 

    Google Scholar 

  95. Mori, S. & Nishizawa, N. K. Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant Cell Physiol. 28, 1081–1092 (1987).

    CAS 

    Google Scholar 

  96. Shojima, S. et al. Biosynthesis of phytosiderophores: in vitro biosynthesis of 2′-deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol. 93, 1497–1503 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  97. Higuchi, K. et al. Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol. 119, 471–479 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  98. Inoue, H. et al. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J. 36, 366–381 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  99. Takahashi, M. et al. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiol. 121, 947–956 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  100. Inoue, H. et al. Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol. Biol. 66, 193–203 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  101. Ma, J. F., Shinada, T., Matsuda, C. & Nomoto, K. Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. J. Biol. Chem. 270, 16549–16554 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  102. Ma, J. F. & Nomoto, K. Two related biosynthetic pathways of mugineic acids in gramineous plants. Plant Physiol. 102, 373–378 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  103. Francis, J., Madinaveitia, J., Macturk, H. M. & Snow, G. A. Isolation from acid-fast bacteria of a growth-factor for Mycobacterium johnei and of a precursor of phthiocol. Nature 163, 365–366 (1949).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  104. Neilands, J. B. in Bioinorganic Chemistry—II, Vol. 261 (ed. Raymond, K. N.) 3–32 (American Chemical Society, 1977).

  105. Powell, P. E., Szaniszlo, P. J., Cline, G. R. & Reid, C. P. P. Hydroxamate siderophores in the iron nutrition of plants. J. Plant Nutr. 5, 653–673 (1982).

    Article 
    CAS 

    Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (grant nos 42325704, 32372810, 42577142 and 32573128), the Disciplinary Breakthrough Project of Ministry of Education (MOE, #00975101), the National Key Research and Development Program of China (grant nos 2022YFD1901500/2022YFD1901501 and 2023YFD1700203), the Tianchi Talent Introduction Program of Xinjiang Autonomous Region, China (2023—‘2+5’), the Tingzhou Talent Introduction Program of Changji Autonomous Region, China (2023) and the Swiss National Science Foundation (grant no. 310030_212266) for funding. We thank S. J. Zheng from Zhejiang University and J. F. Ma from Okayama University for valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and Z.W. developed the concept. S.G., N.W., T.W. and Y.Z. performed the literature search and prepared the figures. F.Z. and Q.S. provided some intellectual input for this manuscript. S.G., N.W., R.K., Y.Z. and Z.W. wrote the manuscript with contributions and input from all authors.

Corresponding authors

Correspondence to
Zhong Wei or Yuanmei Zuo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Takanori Kobayashi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article

Gu, S., Wang, N., Zheng, Y. et al. Integrating microbial siderophores into concepts of plant iron nutrition.
Nat. Plants (2025). https://doi.org/10.1038/s41477-025-02171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41477-025-02171-x


Source: Ecology - nature.com

Evolutionary adaptation of anaerobic and aerobic metabolism to high sulfide and hypoxic hydrothermal vent crab, Xenograpsus testudinatus

Impact of mixing duration on growth and nutrient removal efficiency of Scenedesmus sp. in a novel raceway pond system