in

Satisfying multidimensional human well-being efficiently and equitably through dynamic urban planning


Abstract

Achieving multidimensional human well-being in cities has become a key issue for sustainable development. Land-use planning can help to advance human well-being by equitably and efficiently locating industries in areas with higher productivity and lower environmental impact. To this end, we analyzed how cities deliver ecological and economic benefits at both city and grid scales by incorporating three key characteristics: distance decay, dynamic accumulation, and interactive effects. We integrated the “source-flow-sink” theory with spatial mapping models to link benefit supply with the populations they serve. Based on this, we proposed a dynamic urban planning framework that develops an industry suitability index—combining multidimensionality, efficiency, and equity—to support land-use decision-making. Application in Ordos City, China, indicates that high-suitability lands for industry are scarce. In our scenarios, a comprehensive strategy yielded multiple benefits with relatively less land conversion, while other strategies trade ecological for economic benefits.

Similar content being viewed by others

Does people oriented urbanization catch up with land and population urbanization

Land cover matters to human well-being

Global urban visual perception varies across demographics and personalities

Data availability

Data will be made available on request.

Code availability

Code will be made available on request.

References

  1. UN DESA. World Urbanization Prospects (2018).

  2. Brevik, K., Adams, J., Dube, B., Barbieri, L. & Haage, G. Y. Wellbeing in the more-than-human world. in Sustainable Wellbeing Futures 151–166 (Edward Elgar Publishing, 2020).

  3. Fang, Z. et al. A comprehensive framework for detecting economic growth expenses under ecological economics principles in China. Sustain. Horiz. 4, 100035 (2022).

    Google Scholar 

  4. Cheng, C. et al. Nature’s hand in megacity cluster progress: Integrating SDG11 with ecosystem service dynamics. Sustain. Cities Soc. 108, 105471 (2024).

    Google Scholar 

  5. Grabowski, Z. J., McPhearson, T. & Pickett, S. T. A. Transforming US urban green infrastructure planning to address equity. Landsc. Urban Plan. 229, 104591 (2023).

    Google Scholar 

  6. Nguyen, N. T. H. et al. Maximising resilience to sea-level rise in urban coastal ecosystems through systematic conservation planning. Landsc. Urban Plan. 221, 104374 (2022).

    Google Scholar 

  7. Vaz, A. S. et al. Integrating conservation targets and ecosystem services in landscape spatial planning from Portugal. Landsc. Urban Plan. 215, 104213 (2021).

    Google Scholar 

  8. Zhang, Y., Smith, J. P., Tong, D. & Turner II, B. L. Optimizing the co-benefits of food desert and urban heat mitigation through community garden planning. Landsc. Urban Plan. 226, 104488 (2022).

    Google Scholar 

  9. Xue, D. et al. Empirical investigation of urban land use efficiency and influencing factors of the Yellow River basin Chinese cities. Land Use Policy 117, 106117 (2022).

    Google Scholar 

  10. Gong, J. et al. Tradeoffs/synergies of multiple ecosystem services based on land use simulation in a mountain-basin area, western China. Ecol. Indic. 99, 283–293 (2019).

    Google Scholar 

  11. Adem Esmail, B. et al. Greening cities through urban planning: a literature review on the uptake of concepts and methods in Stockholm. Urban For. Urban Green. 72, 127584 (2022).

    Google Scholar 

  12. Jiang, Y., Tang, Y.-T., Long, H. & Deng, W. Land consolidation: a comparative research between Europe and China. Land Use Policy 112, 105790 (2022).

    Google Scholar 

  13. Liu, Y. & Zhou, Y. Territory spatial planning and national governance system in China. Land Use Policy 102, 105288 (2021).

    Google Scholar 

  14. Daly, H. E. & Farley, J. Ecological Economics, Second Edition: Principles and Applications (Island Press, 2011).

  15. Gould, R. K. et al. How Ecosystem Services Research Can Advance Ecological Economics Principles Ch. 8 (Edward Elgar Publishing, 2020).

  16. Sun, L., Chen, J., Li, Q. & Huang, D. Dramatic uneven urbanization of large cities throughout the world in recent decades. Nat. Commun. 11, 5366 (2020).

    Google Scholar 

  17. Fanning, A. L., O’Neill, D. W., Hickel, J. & Roux, N. The social shortfall and ecological overshoot of nations. Nat. Sustain. 5, 26–36 (2022).

    Google Scholar 

  18. O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).

    Google Scholar 

  19. Jabbar, M., Yusoff, M. M. & Shafie, A. Assessing the role of urban green spaces for human well-being: a systematic review. GeoJournal 87, 4405–4423 (2022).

    Google Scholar 

  20. Pinto, L. V., Inácio, M., Ferreira, C. S. S., Ferreira, A. D. & Pereira, P. Ecosystem services and well-being dimensions related to urban green spaces – A systematic review. Sustain. Cities Soc. 85, 104072 (2022).

    Google Scholar 

  21. Mouratidis, K. Urban planning and quality of life: a review of pathways linking the built environment to subjective well-being. Cities 115, 103229 (2021).

    Google Scholar 

  22. Han, T. et al. Response of ecosystem services and environmental dynamics in large open-pit coal mines: A case study in semi-arid areas. Glob. Ecol. Conserv. 51, e02891 (2024).

    Google Scholar 

  23. Fang, Z. et al. Framework of land use planning for an energy producing city of Northwest China based on water-energy-food nexus. J. Clean. Prod. 451, 142126 (2024).

    Google Scholar 

  24. Fang, Z. et al. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 831, 154967 (2022).

    Google Scholar 

  25. Kati, V., Kassara, C., Vrontisi, Z. & Moustakas, A. The biodiversity-wind energy-land use nexus in a global biodiversity hotspot. Sci. Total Environ. 768, 144471 (2021).

    Google Scholar 

  26. Farley, J. & Kish, K. Ecological economics: the next 30 years. Ecol. Econ. 190, 107211 (2021).

    Google Scholar 

  27. Aryal, K., Maraseni, T. & Apan, A. How much do we know about trade-offs in ecosystem services? A systematic review of empirical research observations. Sci. Total Environ. 806, 151229 (2022).

    Google Scholar 

  28. Costanza, R. Ecological economics in 2049: getting beyond the argument culture to the world we all want. Ecol. Econ. 168, 106484 (2020).

    Google Scholar 

  29. Egarter Vigl, L., Depellegrin, D., Pereira, P., De Groot, R. & Tappeiner, U. Mapping the ecosystem service delivery chain: capacity, flow, and demand pertaining to aesthetic experiences in mountain landscapes. Sci. Total Environ. 574, 422–436 (2017).

    Google Scholar 

  30. Metzger, J. P. et al. Considering landscape-level processes in ecosystem service assessments. Sci. Total Environ. 796, 149028 (2021).

    Google Scholar 

  31. Arvidsson, M., Lovsjö, N. & Keuschnigg, M. Urban scaling laws arise from within-city inequalities. Nat. Hum. Behav. 7, 365–374 (2023).

    Google Scholar 

  32. Wang, L., Zheng, H., Chen, Y., Ouyang, Z. & Hu, X. Systematic review of ecosystem services flow measurement: main concepts, methods, applications and future directions. Ecosyst. Serv. 58, 101479 (2022).

    Google Scholar 

  33. Yang, L., Zhang, F. & Qin, L. Construction and stability evaluation of ecological networks in the Loess Plateau. Ecol. Indic. 159, 111697 (2024).

    Google Scholar 

  34. Lin, L. et al. Ecological security patterns at different spatial scales on the Loess Plateau. Remote Sens. 15, 1011 (2023).

    Google Scholar 

  35. Battersby, S. How to expand solar power without using precious land. Proc. Natl Acad. Sci. USA 120, e2301355120 (2023).

    Google Scholar 

  36. Dunnett, S., Holland, R. A., Taylor, G. & Eigenbrod, F. Predicted wind and solar energy expansion has minimal overlap with multiple conservation priorities across global regions. Proc. Natl Acad. Sci. USA 119, e2104764119 (2022).

    Google Scholar 

  37. Miskin, C. K. et al. Sustainable co-production of food and solar power to relax land-use constraints. Nat. Sustain. 2, 972–980 (2019).

    Google Scholar 

  38. Pascual, U. et al. Diverse values of nature for sustainability. Nature 1–11, https://doi.org/10.1038/s41586-023-06406-9 (2023).

  39. Deng, C. et al. How trade-offs between ecological construction and urbanization expansion affect ecosystem services. Ecol. Indic. 122, 107253 (2021).

    Google Scholar 

  40. Jones, N. A., Shaw, S., Ross, H., Witt, K. & Pinner, B. The study of human values in understanding and managing social-ecological systems. Ecol. Soc. 21, https://www.jstor.org/stable/26270349 (2016).

  41. Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2, 29–38 (2019).

    Google Scholar 

  42. Pan, H., Deal, B., Chen, Y. & Hewings, G. A Reassessment of urban structure and land-use patterns: distance to CBD or network-based? — Evidence from Chicago. Reg. Sci. Urban Econ. 70, 215–228 (2018).

    Google Scholar 

  43. Kwak, Y., Chen, S. & Deal, B. Transitioning complex socioeconomic modeling to informed and visualized decision-making: a tightly coupled planning support system. Appl. Geogr. 169, 103332 (2024).

    Google Scholar 

  44. Alcamo, J. Chapter six the SAS approach: combining qualitative and quantitative knowledge in environmental scenarios. in Developments in Integrated Environmental Assessment Vol. 2 (ed Alcamo, J) 123–150 (Elsevier, 2008).

  45. Saltelli, A. et al. Global Sensitivity Analysis: The Primer (John Wiley & Sons, 2008).

  46. Masoomi, Z. & Mesgari, M. S. Spatial modeling of urban land use change using NSGA-II algorithm and clustering of the Pareto-front for urban dynamic plans. J. Geomat. Sci. Technol. 5, 139–157 (2015).

    Google Scholar 

  47. Miao, H. & Zhou, H. Evaluation of county-level economic efficiency and its spatiotemporal differentiation in Hohhot-Baotou-Ordos-Yulin urban agglomeration in China. Humanit. Soc. Sci. Commun. 10, 1–15 (2023).

    Google Scholar 

  48. Millennium Ecosystem Assessment, M. E. A. Ecosystems and Human Well-Being. Vol. 5 (Island Press Washington, DC, 2005).

  49. Ranis, G., Stewart, F. & Samman, E. Human development: beyond the human development index. J. Hum. Dev. 7, 323–358 (2006).

    Google Scholar 

  50. Rao, N. D. & Min, J. Decent living standards: material prerequisites for human wellbeing. Soc. Indic. Res. 138, 225–244 (2018).

    Google Scholar 

  51. Rosenthal, S. S. & Strange, W. C. How close is close? The spatial reach of agglomeration economies. J. Econ. Perspect. 34, 27–49 (2020).

    Google Scholar 

  52. Huang, Y., Hong, T. & Ma, T. Urban network externalities, agglomeration economies and urban economic growth. Cities 107, 102882 (2020).

    Google Scholar 

  53. Jiao, J., Wang, J., Zhang, F., Jin, F. & Liu, W. Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China. Transp. Policy 91, 1–15 (2020).

    Google Scholar 

  54. Eminagaoglu, M. A new similarity measure for vector space models in text classification and information retrieval. J. Inf. Sci. 48, 463–476 (2022).

    Google Scholar 

  55. Wątróbski, J., Bączkiewicz, A., Ziemba, E. & Sałabun, W. Sustainable cities and communities assessment using the DARIA-TOPSIS method. Sustain. Cities Soc. 83, 103926 (2022).

    Google Scholar 

  56. Ordos Municipal People’s Government. Ordos City Plan (2011–2030) (2011).

  57. Ordos Energy Bureau. Ordos 14th Five-Year Comprehensive Energy Development Plan (2025–2030) (2024).

  58. Ye, Y., Qin, Y., Yu, R. & Wu, Q. Optimization of Chinese land spatial pattern in the transformation process of resource-based cities: a case study in Tongling City, China. Sci. Rep. 14, 6092 (2024).

    Google Scholar 

  59. Zhao, J., Chen, N. & Jin, Z. The more centralized the spatial structure is, the greater the economic growth? Evidence from urban agglomerations in western China. Humanit Soc. Sci. Commun. 12, 483 (2025).

    Google Scholar 

  60. Wu, C., Smith, D. & Wang, M. Simulating the urban spatial structure with spatial interaction: a case study of urban polycentricity under different scenarios. Comput. Environ. Urban Syst. 89, 101677 (2021).

    Google Scholar 

  61. Sun, S. Transformation from urban and rural planning to territory spatial planning. FURP 1, 2 (2023).

    Google Scholar 

  62. Li, L., Cheng, J., Bannister, J. & Mai, X. Geographically and temporally weighted co-location quotient: an analysis of spatiotemporal crime patterns in greater Manchester. Int. J. Geogr. Inf. Sci. 36, 918–942 (2022).

    Google Scholar 

Download references

Acknowledgements

This paper was supported by the National Natural Science Foundation of China (No. 72404267), the Postdoctoral Fellowship Program of CPSF (No. GZB20240816), the China Postdoctoral Science Foundation (No. 2024M753474), the National Natural Science Foundation of China (No. 32471735), Yunnan Science and Technology Department (No. 202501AS070088), Yunnan Revitalization Talent Support Program Innovation Team Project (No. 202405AS350019), The 14th Five-Year Plan of the Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences (No. E3ZKFF7B).

Author information

Authors and Affiliations

Authors

Contributions

S.X.: writing—original draft, review & editing, conceptualization. Z.F.: conceptualization, methodology, writing—original draft. Z.H.: methodology, supervision, writing—original draft. C.C.: writing—original draft, visualization. Q.Z.: writing—original draft, literature review. S.Z.: data curation, coding. Z.Z.: coding. N.J.-N.: writing—review & editing. D.J.G.: writing—review & editing. T.W.: formal analysis. Y.Z.: writing—review & editing. Y.Z.: writing—review & editing. Y.B.: writing—review & editing.

Corresponding authors

Correspondence to
Zhou Fang or Zhongde Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information R4

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Cite this article

Xue, S., Fang, Z., Huang, Z. et al. Satisfying multidimensional human well-being efficiently and equitably through dynamic urban planning.
npj Urban Sustain (2025). https://doi.org/10.1038/s42949-025-00313-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42949-025-00313-w


Source: Ecology - nature.com

Data assimilation reveals behavioral dynamics of sea cucumbers as a model for slow-moving benthic animals

Segmentation of plateau zokor mounds in alpine meadows from UAV images using an improved UNet network

Back to Top