Abstract
A hundred years ago Karl von Frisch and his students demonstrated that honey bees use time-memory to schedule their daily foraging flights. However, till today little is known about molecular processes and functional interactions between memory centers and the circadian clock underlying the capability to form time-memories in animals. Combining feeder time-training of foragers with time-series RNA sequencing and RNAscope labeling revealed molecular features associated with the expectation of foraging activity: (i) anticipatory activation of the transcription factor Egr1 and the receptor for pigment dispersing factor (pdfr) in the small-type Kenyon cells (KCs), (ii) synchronized peak-expression of more than 850 genes including Egr1 downstream genes and well-known memory-related genes during training time, and (iii) groups of KCs and cells associated with the central complex co-expressing per and cry2. With respect to earlier studies characterizing behavioral correlates of time-memory, we speculate that anticipatory initiation of physiological and transcriptional activity in the small-type KCs might function in preparing the worker bee for its foraging activity including reactivation and reconsolidation of foraging related memories. The expression of clock genes in addition to pdfr in KCs suggests an unexpected complexity of functional interactions between memory centers and the clock in honey bees.
Data availability
The RNA-seq data generated and/or analyzed during the current study have been deposited in the Gene Expression Omnibus (GEO) under the Accession Number GSE263576.
References
Beling, I. Über Das Zeitgedӓchtnis der Bienen. Z. F Vergl Physiologie. 9, 259–338. https://doi.org/10.1007/BF00340159 (1929).
Krebs, J. R. & Biebach, H. Time-Place Learning by Garden Warblers (Sylvia borin): Route or Map? Ethology 83, 248–256. (1989). https://doi.org/10.1111/j.1439-0310.1989.tb00532.x
Van Der Zee, E. A. et al. Circadian Time-Place learning in mice depends on cry genes. Curr. Biol. 18, 844–848. https://doi.org/10.1016/j.cub.2008.04.077 (2008).
Chouhan, N. S., Wolf, R., Helfrich-Förster, C. & Heisenberg, M. Flies remember the time of day. Curr. Biol. 25, 1619–1624. https://doi.org/10.1016/j.cub.2015.04.032 (2015).
Sharma, V. K. Adaptive significance of circadian clocks. Chronobiol. Int. 20, 901–919. https://doi.org/10.1081/CBI-120026099 (2003).
Wahl, O. Neue untersuchungen über Das Zeitgedächtnis der Bienen. Z. F Vergl Physiologie. 16, 529–589. https://doi.org/10.1007/BF00338333 (1932).
Pahl, M., Zhu, H., Pix, W., Tautz, J. & Zhang, S. Circadian timed episodic-like memory – a bee knows what to do when,and also where. J. Exp. Biol. 210, 3559–3567. https://doi.org/10.1242/jeb.005488 (2007).
Kleber, E. Hat Das Zeitgedächtnis der Bienen biologische bedeutung ? Z. Vergl Physiol. 22, 221–262. https://doi.org/10.1007/BF00586500 (1935).
Koltermann, R. Periodicity in the activity and learning performance of the honeybee. In Experimental Analysis of Insect Behavior (Springer Berlin), 218–227. (1974).
Page, T. L. Circadian regulation of learning and memory. Curr. Opin. Insect Sci. 7, 87–91. https://doi.org/10.1016/j.cois.2014.12.001 (2015).
Gallistel, C. R. The Organization of Learning (The MIT Press) 1990.
Flyer-Adams, J. G. et al. Regulation of olfactory associative memory by the circadian clock output signal Pigment-Dispersing factor (PDF). J. Neurosci. 40, 9066–9077. https://doi.org/10.1523/JNEUROSCI.0782-20.2020 (2020).
Shah, A., Jain, R. & Brockmann, A. Egr-1: A candidate transcription factor involved in molecular processes underlying Time-Memory. Front. Psychol. 9, 865. https://doi.org/10.3389/fpsyg.2018.00865 (2018).
Beer, K. & Helfrich-Förster, C. Model and Non-model insects in chronobiology. Front. Behav. Neurosci. 14, 601676. https://doi.org/10.3389/fnbeh.2020.601676 (2020).
Van Nest, B. N., Otto, M. W. & Moore, D. High experience levels delay recruitment but promote simultaneous time-memories in honey bee foragers. J. Experimental Biology Jeb. 187336. https://doi.org/10.1242/jeb.187336 (2018).
Singh, A. S., Shah, A. & Brockmann, A. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway: Honey bee foraging upregulates Egr-1 and Hr38 genes. Insect Mol. Biol.. 27, 90–98. (2018). https://doi.org/10.1111/imb.12350
Yap, E. L. & Greenberg, M. E. Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron 100, 330–348. (2018). https://doi.org/10.1016/j.neuron.2018.10.013
Khamis, A. M. et al. Insights into the transcriptional architecture of behavioral plasticity in the honey bee apis mellifera. Sci. Rep. 5, 11136. https://doi.org/10.1038/srep11136 (2015).
Alberini, C. M. & Kandel, E. R. The regulation of transcription in memory consolidation. Cold Spring Harb Perspect. Biol. 7, a021741. https://doi.org/10.1101/cshperspect.a021741 (2015).
Chandrasekaran, S. et al. Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proc. Natl. Acad. Sci. U.S.A. 108, 18020–18025. https://doi.org/10.1073/pnas.1114093108 (2011).
Jones, S. G., Nixon, K. C. J., Chubak, M. C. & Kramer, J. M. Mushroom Body Specific Transcriptome Analysis Reveals Dynamic Regulation of Learning and Memory Genes After Acquisition of Long-Term Courtship Memory in Drosophila. G3 Genes|Genomes|Genetics 8, 3433–3446. https://doi.org/10.1534/g3.118.200560 (2018).
Shih, M. F. M., Davis, F. P., Henry, G. L. & Dubnau, J. Nuclear Transcriptomes of the Seven Neuronal Cell Types That Constitute the Drosophila Mushroom Bodies. G3 Genes|Genomes|Genetics 9, 81–94. https://doi.org/10.1534/g3.118.200726 (2019).
Suenami, S., Oya, S., Kohno, H. & Kubo, T. Kenyon cell Subtypes/Populations in the honeybee mushroom bodies: possible function based on their gene expression Profiles, Differentiation, possible Evolution, and application of genome editing. Front. Psychol. 9, 1717. https://doi.org/10.3389/fpsyg.2018.01717 (2018).
Kandel, E. R., Koester, J., Mack, S. & Siegelbaum, S. (eds) Principles of Neural Science Sixth Edition (McGraw Hill), 2021).
Hamilton, W. B. et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature 575, 355–360. https://doi.org/10.1038/s41586-019-1732-z (2019).
Kornhauser, J. M., Nelson, D. E., Mayo, K. E. & Takahashi, J. S. Regulation of Jun -B messenger RNA and AP-1 activity by light and a circadian clock. Science 255, 1581–1584. https://doi.org/10.1126/science.1549784 (1992).
Jagannath, A. et al. The multiple roles of salt-inducible kinases in regulating physiology. Physiol. Rev. 103, 2231–2269. https://doi.org/10.1152/physrev.00023.2022 (2023).
Hirayama, J., Cardone, L., Doi, M. & Sassone-Corsi, P. Common pathways in circadian and cell cycle clocks: Light-dependent activation of Fos/AP-1 in zebrafish controls CRY-1a and WEE-1. Proc. Natl. Acad. Sci. U.S.A. 102, 10194–10199. https://doi.org/10.1073/pnas.0502610102 (2005).
Iino, S. et al. Neural activity mapping of bumble bee (Bombus ignitus) brains during foraging flight using immediate early genes. Sci. Rep. 10, 7887. https://doi.org/10.1038/s41598-020-64701-1 (2020).
Kaneko, K., Suenami, S. & Kubo, T. Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel ‘middle-type’ Kenyon cells. Zool. Lett. 2, 14. https://doi.org/10.1186/s40851-016-0051-6 (2016).
Kumar, S. et al. An ecdysone-responsive nuclear receptor regulates circadian rhythms in drosophila. Nat. Commun. 5, 5697. https://doi.org/10.1038/ncomms6697 (2014).
Scheiner, R. et al. Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees. J. Experimental Biology Jeb. 152496. https://doi.org/10.1242/jeb.152496 (2017).
Peng, T., Derstroff, D., Maus, L., Bauer, T. & Grüter, C. Forager age and foraging state, but not cumulative foraging activity, affect biogenic amine receptor gene expression in the honeybee mushroom bodies. Genes Brain Behav. 20, e12722. https://doi.org/10.1111/gbb.12722 (2021).
Kandel, E. R., Dudai, Y. & Mayford, M. R. Learning and Memory (Cold Spring Harbor Laboratory Press), 2016).
Galizia, C. G., Eisenhardt, D. & Giurfa, M. (eds) Honeybee Neurobiology and Behavior: A Tribute to Randolf Menzel (Springer Netherlands) https://doi.org/10.1007/978-94-007-2099-2 (2012).
Kuwabara, T., Kohno, H., Hatakeyama, M. & Kubo, T. Evolutionary dynamics of mushroom body Kenyon cell types in hymenopteran brains from multifunctional type to functionally specialized types. Sci. Adv. 9, eadd4201. https://doi.org/10.1126/sciadv.add4201 (2023).
Rubin, E. B. et al. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res. 16, 1352–1365. https://doi.org/10.1101/gr.5094806 (2006).
Ma, D. et al. A transcriptomic taxonomy of Drosophila circadian neurons around the clock. eLife 10, e63056. https://doi.org/10.7554/eLife.63056 (2021).
Barber, A. F., Fong, S. Y., Kolesnik, A., Fetchko, M. & Sehgal, A. Drosophila clock cells use multiple mechanisms to transmit time-of-day signals in the brain. Proc. Natl. Acad. Sci. U.S.A. 118, e2019826118. https://doi.org/10.1073/pnas.2019826118 (2021).
Naeger, N. L. et al. Neurogenomic signatures of Spatiotemporal memories in time-trained forager honey bees. J. Exp. Biol. 214, 979–987. https://doi.org/10.1242/jeb.053421 (2011).
Moore, D., Siegfried, D., Wilson, R. & Rankin, M. A. The influence of time of day on the foraging behavior of the Honeybee, apis mellifera. J. Biol. Rhythms. 4, 305–325. https://doi.org/10.1177/074873048900400301 (1989).
Gronenberg, W. Subdivisions of hymenopteran mushroom body Calyces by their afferent supply. J. Comp. Neurol. 435, 474–489. https://doi.org/10.1002/cne.1045 (2001).
Heinze, S. & Homberg, U. Maplike representation of celestial E -Vector orientations in the brain of an insect. Science 315, 995–997. https://doi.org/10.1126/science.1135531 (2007).
Brockmann, A. & Robinson, G. E. Central projections of sensory systems involved in honey bee dance Language communication. Brain Behav. Evol. 70, 125–136. https://doi.org/10.1159/000102974 (2007).
Hensgen, R., England, L., Homberg, U. & Pfeiffer, K. Neuroarchitecture of the central complex in the brain of the honeybee: neuronal cell types. J. Comp. Neurol. 529, 159–186. https://doi.org/10.1002/cne.24941 (2021).
Fuchikawa, T. et al. Neuronal circadian clock protein oscillations are similar in behaviourally rhythmic forager honeybees and in arrhythmic nurses. Open. Biol. 7, 170047. https://doi.org/10.1098/rsob.170047 (2017).
Seeley, T. D. The Wisdom of the Hive: the Social Physiology of Honey Bee Colonies (Harvard Univ. Press), 1995).
Reinhard, J., Srinivasan, M. V. & Zhang, S. Scent-triggered navigation in honeybees. Nature 427, 411–411. https://doi.org/10.1038/427411a (2004).
Herrero, A. et al. Coupling neuropeptide levels to structural plasticity in drosophila clock neurons. Curr. Biol. 30, 3154–3166e4. https://doi.org/10.1016/j.cub.2020.06.009 (2020).
Frisch, B. & Aschoff, J. Circadian rhythms in honeybees: entrainment by feeding cycles. Physiol. Entomol. 12, 41–49. https://doi.org/10.1111/j.1365-3032.1987.tb00722.x (1987).
Jain, R. & Brockmann, A. Time-restricted foraging under natural light/dark condition shifts the molecular clock in the honey bee, Apis mellifera. Chronobiol. Int. 35, 1723–1734. https://doi.org/10.1080/07420528.2018.1509867 (2018).
Machado Almeida, P., Lago Solis, B., Stickley, L., Feidler, A. & Nagoshi, E. Neurofibromin 1 in mushroom body neurons mediates circadian wake drive through activating cAMP–PKA signaling. Nat. Commun. 12, 5758. https://doi.org/10.1038/s41467-021-26031-2 (2021).
Hasegawa, S. et al. Hippocampal clock regulates memory retrieval via dopamine and PKA-induced GluA1 phosphorylation. Nat. Commun. 10, 5766. https://doi.org/10.1038/s41467-019-13554-y (2019).
Lehmann, M., Gustav, D. & Galizia, C. G. The early bee catches the flower – circadian rhythmicity influences learning performance in honey bees, apis mellifera. Behav. Ecol. Sociobiol. 65, 205–215. https://doi.org/10.1007/s00265-010-1026-9 (2011).
Shieh, K. R. Distribution of the rhythm-related genes rPERIOD1, rPERIOD2, and rCLOCK, in the rat brain. Neuroscience 118, 831–843. https://doi.org/10.1016/S0306-4522(03)00004-6 (2003).
Houl, J. H., Yu, W., Dudek, S. M. & Hardin, P. E. Drosophila CLOCK is constitutively expressed in circadian oscillator and Non-Oscillator cells. J. Biol. Rhythms. 21, 93–103. https://doi.org/10.1177/0748730405283697 (2006).
Smies, C. W., Bodinayake, K. K. & Kwapis, J. L. Time to learn: the role of the molecular circadian clock in learning and memory. Neurobiol. Learn. Mem. 193, 107651. https://doi.org/10.1016/j.nlm.2022.107651 (2022).
Gerstner, J. R. & Yin, J. C. P. Circadian rhythms and memory formation. Nat. Rev. Neurosci. 11, 577–588. https://doi.org/10.1038/nrn2881 (2010).
Lehr, A. B., McDonald, R. J., Thorpe, C. M., Tetzlaff, C. & Deibel, S. H. A local circadian clock for memory? Neurosci. Biobehav. Rev.. 127, 946–957. https://doi.org/10.1016/j.neubiorev.2020.11.032 (2021).
Homberg, U. In search of the Sky compass in the insect brain. Naturwissenschaften 91, 199–208. https://doi.org/10.1007/s00114-004-0525-9 (2004).
Zhu, H. et al. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that May underlie sun compass navigation. PLoS Biol. 6, e4. https://doi.org/10.1371/journal.pbio.0060004 (2008).
Wahl, O. Beitrag Zur Frage der biologischen bedeutung des Zeitgedächtnisses der Bienen. Z. F Vergl Physiologie. 18, 709–717. https://doi.org/10.1007/BF00338365 (1933).
Farris, S. M. Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain Behav. Evol. 82, 9–18. https://doi.org/10.1159/000352057 (2013).
Couto, A. et al. Rapid expansion and visual specialisation of learning and memory centres in the brains of Heliconiini butterflies. Nat. Commun. 14, 4024. https://doi.org/10.1038/s41467-023-39618-8 (2023).
Buehlmann, C. et al. Mushroom bodies are required for learned visual Navigation, but not for innate visual Behavior, in ants. Curr. Biol. 30, 3438–3443e2. https://doi.org/10.1016/j.cub.2020.07.013 (2020).
Moore, D. & Doherty, P. Acquisition of a time-memory in forager honey bees. J. Comp. Physiol. A. 195, 741–751. https://doi.org/10.1007/s00359-009-0450-7 (2009).
Eban-Rothschild, A. D. & Bloch, G. Differences in the sleep architecture of forager and young honeybees(Apis mellifera). J. Exp. Biol. 211, 2408–2416. https://doi.org/10.1242/jeb.016915 (2008).
Wheeler, M. M., Ament, S. A., Rodriguez-Zas, S. L., Southey, B. & Robinson, G. E. Diet and endocrine effects on behavioral maturation-related gene expression in the Pars intercerebralis of the honey bee brain. J. Exp. Biol. Jeb. 119420. https://doi.org/10.1242/jeb.119420 (2015).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).
Andrews, S. FastQC: A quality control tool for high throughput sequence data. Online. (2010).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. https://doi.org/10.1093/bioinformatics/bts635 (2013).
Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. https://doi.org/10.1093/bioinformatics/btt656 (2014).
Love, M. I., Huber, W. & Anders, S. Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).
Wu, G., Anafi, R. C., Hughes, M. E., Kornacker, K. & Hogenesch, J. B. MetaCycle: an integrated R package to evaluate periodicity in large scale data. Bioinformatics 32, 3351–3353. https://doi.org/10.1093/bioinformatics/btw405 (2016).
Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629. https://doi.org/10.1093/bioinformatics/btz931 (2020).
Poulopoulos, A. et al. Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature 565, 356–360. https://doi.org/10.1038/s41586-018-0847-y (2019).
Pharris, M. C. et al. An automated workflow for quantifying RNA transcripts in individual cells in large data-sets. MethodsX 4, 279–288. https://doi.org/10.1016/j.mex.2017.08.002 (2017).
Moore, D. Honey bee circadian clocks: behavioral control from individual workers to whole-colony rhythms. J. Insect. Physiol. 47, 843–857. https://doi.org/10.1016/S0022-1910(01)00057-9 (2001).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).
Acknowledgements
We thank Gene E. Robinson, Wulfila Gronenberg, and Charlotte Helfrich-Förster for their comments on an earlier version of the manuscript. We also thank the Next Generation Genomics Facility at NCBS, particularly Awadhesh Pandit for assisting with the RNA-seq run. We are grateful to the Central Imaging and Flow Cytometry Facility (CIFF) and the instrumentation team at NCBS for their support. We acknowledge the technical advice and support from Zeiss Microscopy team and Advanced Cell Diagnostics (ACD). Further, we thank Dimple Notani and Sheeba Vasu for their advice and Abhishek Bhattacharya for support in maintaining access to experimental facilities. We are thankful to Lukumoni Das, Sukrithi N Venu and Sripriya Bulusu for helping with the behavioral experiments.
Funding
Open access funding provided by Department of Atomic Energy. This study was supported by funding to TR (TIFR graduate student fellowship), NCBS-TIFR institutional funds to AB (No. P4167 and N1158) and the Department of Atomic Energy, Government of India (No. 12-R&D-TFR-5.04–0800 and 12-R&D-TFR-5.04–0900).
Author information
Authors and Affiliations
Contributions
Conceptualization: T.R., A.B.; Methodology: T.R., A.B.; Investigation: T.R.; Visualization: T.R., R.J., A.B.; Formal analysis: T.R., R.J., A.B.; Funding acquisition: A.B.; Supervision: A.B.; Writing-original draft: T.R., A.B.; Writing-review and editing: T.R., A.B.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplementary Material 1
Supplementary Material 2
Supplementary Material 3
Supplementary Material 4
Supplementary Material 5
Supplementary Material 6
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
About this article
Cite this article
Roy, T., Jain, R. & Brockmann, A. Transcriptional responses in feeder time-trained foragers suggest diverse interactions between the circadian clock and mushroom bodies in honey bees.
Sci Rep (2025). https://doi.org/10.1038/s41598-025-31775-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-025-31775-8
Keywords
- Time-memory
- Circadian clock
- Mushroom bodies
- Kenyon cells
- Central complex
- Time-series RNA sequencing
- RNAscope labeling
- Honey bees
Source: Ecology - nature.com
