in

Environmental determinants of the occurrence and activity of Ixodes ricinus ticks and the prevalence of tick-borne diseases in eastern Poland

[adace-ad id="91168"]
  • 1.

    European Centre for Disease Prevention and Control and European Food Safety Authority. Tick maps [internet]. Stockholm: ECDC. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/tick-maps (2020).
    Accessed 1 May 2021.

  • 2.

    Zając, Z., Woźniak, A. & Kulisz, J. Density of Dermacentor reticulatus ticks in eastern Poland. Int. J. Environ. Res. Public Health. 17, 2814 (2020).

    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Levytska, V. A. Seasonal activity of ixodid ticks in Podilskyi region. Sci. Messenger LNU Vet. Med. Biotechnol. Ser. Vet. Sci. 22, 66–70 (2020).

    Google Scholar 

  • 4.

    Rybarova, M., Honsová, M., Papousek, I. & Siroky, P. Variability of species of Babesia Starcovici, 1893 in three sympatric ticks (Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna) at the edge of Pannonia in the Czech Republic and Slovakia. Folia Parasitol. (Praha) 64, 028 (2017).

    Article 
    CAS 

    Google Scholar 

  • 5.

    Chisu, V., Foxi, C. & Masala, G. First molecular detection of Francisella-like endosymbionts in Hyalomma and Rhipicephalus tick species collected from vertebrate hosts from Sardinia island, Italy. Exp. Appl. Acarol. 79, 245–254 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Hornok, S. et al. East and west separation of Rhipicephalus sanguineus mitochondrial lineages in the Mediterranean Basin. Parasit. Vectors 10, 1–11 (2017).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Estrada-Peña, A., Mihalca, A. D. & Petney, T. N. Ticks of Europe and North Africa: A Guide to Species Identification 189–196 (Springer, 2018).

    Google Scholar 

  • 8.

    Younsi, H. et al. Ixodes inopinatus and Ixodes ricinus (Acari: Ixodidae) are sympatric ticks in North Africa. J. Med. Entomol. 57, 952–956 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Fares, W. et al. Tick-borne encephalitis virus in Ixodes ricinus (Acari: Ixodidae) ticks, Tunisia. Ticks Tick Borne Dis. 12, 101606 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Boularias, G. et al. High-throughput microfluidic real-time PCR for the detection of multiple microorganisms in Ixodid cattle ticks in northeast Algeria. Pathogens 10, 362 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Gunes, T. & Ataş, M. The prevalence of tick-borne pathogens in ticks collected from the northernmost province (Sinop) of Turkey. Vector Borne Zoonotic Dis. 20, 171–176 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Keskin, A., Selçuk, A. Y. & Kefelioğlu, H. Ticks (Acari: Ixodidae) infesting some small mammals from Northern Turkey with new tick–host associations and locality records. Exp. Appl. Acarol. 73, 521–526 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Medlock, J. M. et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit. Vectors 6, 1–11 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Mancini, F. et al. Prevalence of tick-borne pathogens in an urban park in Rome, Italy. Ann. Agric. Environ. Med. 21, 723–727 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Halos, L. et al. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Appl. Environ. Microbiol. 76, 4413–4420 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Schulz, M., Mahling, M. & Pfister, K. Abundance and seasonal activity of questing Ixodes ricinus ticks in their natural habitats in southern Germany in 2011. J. Vector Ecol. 39, 56–65 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Lees, A. D. The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology 37, 1–20 (1946).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Milne, A. The ecology of the sheep tick, Ixodes ricinus L.; host relationships of the tick; observations on hill and moorland grazings in northern England. Parasitology 39, 173–197 (1949).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Gassner, F. et al. Geographic and temporal variations in population dynamics of Ixodes ricinus and associated Borrelia infections in The Netherlands. Vector Borne Zoonotic Dis. 11, 523–532 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Jongejan, F. & Uilenberg, G. The global importance of ticks. Parasitology 129, S3–S14 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Gustafson, R. Epidemiological studies of Lyme borreliosis and tick-borne encephalitis. Scand. J. Infect. Dis. Suppl. 92, 1–63 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Atlas o Infectious Diseases. ECDC. https://atlas.ecdc.europa.eu/public/index.aspx. Accessed 1 May 2021.

  • 23.

    Gnativ, B. & Tokarevich, N. K. Long-term monitoring of tick-borne viral encephalitis and tick-borne borreliosis in the Komi Republic. Infektsiia Immun. https://doi.org/10.15789/2220-7619-ROL-1299 (2020).

    Article 

    Google Scholar 

  • 24.

    Vandekerckhove, O., De Buck, E. & Van Wijngaerden, E. Lyme disease in Western Europe: An emerging problem? A systematic review. Acta Clin. Belg. 76, 244–252 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Rizzoli, A. P. et al. Lyme borreliosis in Europe. Euro Surveill. 16, 19906 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Hubálek, Z. & Rudolf, I. Tick-borne viruses in Europe. Parasitol. Res. 111, 9–36 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Grankvist, A. et al. Infections with the tick-borne bacterium “Candidatus Neoehrlichia mikurensis” mimic non-infectious conditions in patients with B cell malignancies or autoimmune diseases. Clin. Infect. Dis. 58, 1716–1722 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Rizzoli, A. P. et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: New hazards and relevance for public health. Front. Public. Health. 2, 251 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Wójcik-Fatla, A. et al. Occurrence of Francisella spp. in Dermacentor reticulatus and Ixodes ricinus ticks collected in eastern Poland. Ticks Tick Borne Dis. 6, 253–257 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Körner, S. et al. Uptake and fecal excretion of Coxiella burnetii by Ixodes ricinus and Dermacentor marginatus ticks. Parasit. Vectors 13, 75 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 31.

    van den Wijngaard, C. C. et al. The cost of Lyme borreliosis. Eur. J. Public Health 27, 538–547 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Muller, I. et al. Evaluating frequency, diagnostic quality, and cost of Lyme borreliosis testing in Germany: A retrospective model analysis. Clin. Dev. Immunol 20, 595427 (2012).

    Google Scholar 

  • 33.

    Lohr, B. et al. Epidemiology and cost of hospital care for Lyme borreliosis in Germany: Lessons from a health care utilization database analysis. Ticks Tick Borne Dis 6, 56–62 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Maes, E., Lecomte, P. & Ray, N. A cost-of-illness study of Lyme disease in the United States. Clin. Ther. 20, 993–1008 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Rogalska, A. et al. What are the costs of diagnostics and treatment of Lyme borreliosis in Poland?. Front. Public Health 8, 1022 (2021).

    Article 

    Google Scholar 

  • 36.

    Gray, J. S. Ixodes ricinus seasonal activity: Implications of global warming indicated by revisiting tick and weather data. Int. J. Med. Microbiol. 298, 19–24 (2008).

    Article 

    Google Scholar 

  • 37.

    Nilsson, A. Seasonal occurrence of Ixodes ricinus (Acari) in vegetation and on small mammals in southern Sweden. Ecography 11, 161–165 (1988).

    Article 

    Google Scholar 

  • 38.

    Grigoryeva, L. A., Tokarevich, N. K., Freilikhman, O. A., Samoylova, E. P. & Lunina, G. A. Seasonal changes in populations of sheep tick, Ixodes ricinus (L., 1758) (Acari: Ixodinae) in natural biotopes of St. Petersburg and Leningrad province, Russian Federation. Syst. Appl. Acarol. 24, 701–710 (2019).

    Google Scholar 

  • 39.

    Kiewra, D. & Lonc, E. Biology of Ixodes ricinus (L.) and its pathogens in Wrocław area. Wiad. Parazytol. 50, 259–264 (2004).

    PubMed 

    Google Scholar 

  • 40.

    Randolph, S. E. Tick ecology: Processes and patterns behind the epidemiological risk posed by Ixodid ticks as vectors. Parasitology 129, S37–S65 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Kiewra, D. & Sobczyński, M. Biometrical analysis of the common tick, Ixodes ricinus, in the Ślęża Massif (Lower Silesia, Poland). J. Vector Ecol. 31, 239–244 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Tagliapietra, V. et al. Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy. Vet. Parasitol. 183, 114–124 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Perret, J. L., Guigoz, E., Rais, O. & Gern, L. Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol. Res. 86, 554–557 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Kubiak, K. & Dziekonska-Rynko, J. Seasonal activity of the common European tick, Ixodes ricinus [Linnaeus, 1758], in the forested areas of the city of Olsztyn and its sorroundings. Wiad. Parazytol. 52, 59–64 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Welc-Falęciak, R., Bajer, A., Paziewska-Harris, A., Baumann-Popczyk, A. & Siński, E. Diversity of Babesia in Ixodes ricinus ticks in Poland. Adv. Med. Sci. 57, 364–369 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Buczek, A., Ciura, D., Bartosik, K., Zając, Z. & Kulisz, J. Threat of attacks of Ixodes ricinus ticks (Ixodida: Ixodidae) and Lyme borreliosis within urban heat islands in south-western Poland. Parasit. Vectors 7, 562 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Bartosik, K. et al. Environmental conditioning of incidence of tick-borne encephalitis in the south-eastern Poland in 1996–2006. Ann. Agric. Environ. Med. 18, 119–126 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Földvári, G. Life cycle and ecology of Ixodes ricinus: The roots of public health importance. In Ecology and Prevention of Lyme borreliosis. Ecology and Control of Vector-Borne Diseases Vol. 4 (eds Braks, M. A. H. et al.) 31–40 (Wageningen Academic Publishers, 2016).

    Chapter 

    Google Scholar 

  • 49.

    Tack, W. et al. Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. For. Ecol. Manag. 265, 30–36 (2012).

    Article 

    Google Scholar 

  • 50.

    Mihalca, A. D. & Sándor, A. D. The role of rodents in the ecology of Ixodes ricinus and associated pathogens in Central and Eastern Europe. Front. Cell Infect. Microbiol. 3, 56 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Opalińska, P. et al. Fivefold higher abundance of ticks (Acari: Ixodida) on the European roe deer (Capreolus capreolus L.) forest than field ecotypes. Sci. Rep. 11, 1–10 (2021).

    Article 
    CAS 

    Google Scholar 

  • 52.

    van Oeveren, F. M. The Role of Ungulates in Ixodes ricinus Density in Europe. Master Thesis, Utrecht University, Faculty of Veterinary Medicine (2021).

  • 53.

    Estrada-Peña, A., Gray, J. S., Kahl, O., Lane, R. S. & Nijhof, A. M. Research on the ecology of ticks and tick-borne pathogens-methodological principles and caveats. Front. Cell. Infect. Microbiol. 3, 29 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Strnad, M., Hönig, V., Růžek, D., Grubhoffer, L. & Rego, R. O. Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol. 83, e00609-e617 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Cisak, E. et al. Study on Lyme borreliosis focus in the Lublin region (eastern Poland). Ann. Agric. Environ. Med. 15, 327–332 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Wójcik-Fatla, A., Cisak, E., Zając, V., Zwoliński, J. & Dutkiewicz, J. Prevalence of tick-borne encephalitis virus in Ixodes ricinus and Dermacentor reticulatus ticks collected from the Lublin region (eastern Poland). Ticks Tick Borne Dis. 2, 16–19 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    National Institute of Public Health, Department of Epidemiology and Surveillance of Infectious Diseases, Laboratory of Monitoring and Epidemiological Analysis. Reports on cases of infectious diseases and poisonings in Poland. http://wwwold.pzh.gov.pl/oldpage/epimeld/index_p.html (2017–2020). Accessed 1 May 2021.

  • 58.

    Barrios, J. M. et al. Relating land cover and spatial distribution of nephropathia epidemica and Lyme borreliosis in Belgium. Int. J. Environ. Health Res. 23, 132–154 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Randolph, S. E. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1045–1056 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Robertson, J. N., Gray, J. S. & Stewart, P. Tick bite and Lyme borreliosis risk at a recreational site in England. Eur. J. Epidemiol. 16, 647–652 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Szekeres, S. Eco-epidemiology of Borrelia miyamotoi and Lyme borreliosis spirochetes in a popular hunting and recreational forest area in Hungary. Parasit. Vectors 8, 309 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Gilbert, L. The impacts of climate change on ticks and tick-borne disease risk. Ann. Rev. Entomol. 66, 373–388 (2021).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Statistical Yearbook of Lubelskie Voivodship. https://lublin.stat.gov.pl/publikacje-i-foldery/roczniki-statystyczne/rocznik-statystyczny-wojewodztwa-lubelskiego-2020,2,20.html (2020). Accessed 1 May 2021.

  • 64.

    Kaszewski, B. M. Climatic Conditions of the Lublin Region 1–42 (Maria Curie-Skłodowska University Publishing House, 2008).

    Google Scholar 

  • 65.

    Climate data: Poland, Historical weather data in Poland https://en.tutiempo.net/climate/poland.html (2020). Accessed on 1 May 2021.

  • 66.

    Matuszkiewicz, J. M. Plant landscapes and geobotanical regions 1: 2,500,000. Plant landscapes and geobotanical regions. In Atlas of the Republic of Poland (IGiPZ PAN, Chief National Surveyor, 1994).

  • 67.

    Randolph, S. E. & Storey, K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): Implications for parasite transmission. J. Med. Entomol. 36, 741–748 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    A new way to detect the SARS-CoV-2 Alpha variant in wastewater

    Inaugural fund supports early-stage collaborations between MIT and Jordan