in

Widespread woody plant use of water stored in bedrock

  • 1.

    Schwinning, S. The ecohydrology of roots in rocks. Ecohydrology 3, 238–245 (2010).

    Google Scholar 

  • 2.

    Rose, K., Graham, R. & Parker, D. Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock. Oecologia 134, 46–54 (2003).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 3.

    Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 4.

    Schwinning, S. A critical question for the critical zone: how do plants use rock water? Plant Soil 454, 49–56 (2020).

    Article 
    CAS 

    Google Scholar 

  • 5.

    Fan, Y. et al. Hillslope hydrology in global change research and Earth system modeling. Wat. Resour. Res. 55, 1737–1772 (2019).

    Article 
    ADS 

    Google Scholar 

  • 6.

    Brantley, S. L. et al. Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences 14, 5115–5142 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 7.

    Chaney, N. W. et al. POLARIS soil properties: 30-m probabilistic maps of soil properties over the contiguous United States. Wat. Resour. Res. 55, 2916–2938 (2019).

    Article 
    ADS 

    Google Scholar 

  • 8.

    Uhlig, D., Schuessler, J. A., Bouchez, J., Dixon, J. L. & Blanckenburg, F. V. Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes. Biogeosciences 14, 3111–3128 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 9.

    Wald, J. A., Graham, R. C. & Schoeneberger, P. J. Distribution and properties of soft weathered bedrock at 1 m depth in the contiguous United States. Earth Surf. Process. Landf. 38, 614–626 (2013).

    Article 
    ADS 

    Google Scholar 

  • 10.

    Nimmo, J. R., Creasey, K. M., Perkins, K. S. & Mirus, B. B. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone. Hydrogeol. J. 25, 421–444 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 11.

    Leshem, B. Resting roots of Pinus halepensis: structure, function, and reaction to water stress. Bot. Gaz. 131, 99–104 (1970).

    Article 

    Google Scholar 

  • 12.

    Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).

    Article 
    ADS 

    Google Scholar 

  • 13.

    Hahm, W. J. et al. Lithologically controlled subsurface critical zone thickness and water storage capacity determine regional plant community composition. Wat. Resour. Res. 55, 3028–3055 (2019).

    Article 
    ADS 

    Google Scholar 

  • 14.

    Eggemeyer, K. D. & Schwinning, S. Biogeography of woody encroachment: why is mesquite excluded from shallow soils? Ecohydrology 2, 81–87 (2009).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Madakumbura, G. D. et al. Recent California tree mortality portends future increase in drought-driven forest die-off. Environ. Res. Lett. 15, 124040 (2020).

    Article 
    ADS 

    Google Scholar 

  • 16.

    McDowell, N. G. et al. Mechanisms of a coniferous woodland persistence under drought and heat. Environ. Res. Lett. 14, 045014 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 17.

    McEvoy, D. J., Pierce, D. W., Kalansky, J. F., Cayan, D. R. & Abatzoglou, J. T. Projected changes in reference evapotranspiration in California and Nevada: implications for drought and wildland fire danger. Earths Future 8, e2020EF001736 (2020).

    Article 
    ADS 

    Google Scholar 

  • 18.

    Hauwert, N. M. & Sharp, J. M. Measuring autogenic recharge over a karst aquifer utilizing eddy covariance evapotranspiration. J. Water Resour. Prot. 6, 869–879 (2014).

    Article 

    Google Scholar 

  • 19.

    Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Hahm, W. J. et al. Oak transpiration drawn from the weathered bedrock vadose zone in the summer dry season. Wat. Resour. Res. 56, e2020WR027419 (2020).

    Article 
    ADS 

    Google Scholar 

  • 22.

    Cannon, W. A. The Root Habits of Desert Plants 131 (Carnegie Institute of Washington, 1911).

  • 23.

    Daily reservoir storage summary. California Department of Water Resources https://info.water.ca.gov/cgi-progs/reservoirs/RES (2020).

  • 24.

    USGS water use data for California. United States Geological Society https://waterdata.usgs.gov/ca/nwis/water_use/ (2020).

  • 25.

    David, T., Ferreira, M., Cohen, S., Pereira, J. & David, J. Constraints on transpiration from an evergreen oak tree in southern Portugal. Agric. For. Meteorol. 122, 193–205 (2004).

    Article 
    ADS 

    Google Scholar 

  • 26.

    Querejeta, J. I., Estrada-Medina, H., Allen, M. F. & Jimenez-Osornio, J. J. Water source partitioning among trees growing on shallow karst soils in a seasonally dry tropical climate. Oecologia 152, 26–36 (2007).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 27.

    Carrière, S. D. et al. The role of deep vadose zone water in tree transpiration during drought periods in karst settings—insights from isotopic tracing and leaf water potential. Sci. Total Environ. 699, 134332 (2020).

    Article 
    CAS 

    Google Scholar 

  • 28.

    Rambal, S. Water balance and pattern of root water uptake by a Quercus coccifera L. evergreen scrub. Oecologia 62, 18–25 (1984).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 29.

    Montaldo, N. et al. Rock water as a key resource for patchy ecosystems on shallow soils: digging deep tree clumps subsidize surrounding surficial grass. Earths Future 9, e2020EF001870 (2021).

    Article 
    ADS 

    Google Scholar 

  • 30.

    Corona, R. & Montaldo, N. On the transpiration of wild olives under water-limited conditions in a heterogeneous ecosystem with shallow soil over fractured rock. J. Hydrol. Hydromech. 68, 338–350 (2020).

    Article 

    Google Scholar 

  • 31.

    Nardini, A. et al. Water ‘on the rocks’: a summer drink for thirsty trees? New Phytol. 229, 199–212 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Ruiz, L. et al. Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): regolith matric storage buffers the groundwater recharge process. J. Hydrol. 380, 460–472 (2010).

    Article 
    ADS 

    Google Scholar 

  • 33.

    Ding, Y., Nie, Y., Chen, H., Wang, K. & Querejeta, J. I. Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. New Phytol. 229, 1339–1353 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Dawson, T. E., Hahm, W. J. & Crutchfield-Peters, K. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. New Phytol. 226, 666–671 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Salve, R., Rempe, D. M. & Dietrich, W. E. Rain, rock moisture dynamics, and the rapid response of perched groundwater in weathered, fractured argillite underlying a steep hillslope. Wat. Resour. Res. 48, W11528 (2012).

    Article 
    ADS 

    Google Scholar 

  • 36.

    Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Kapnick, S. & Hall, A. Causes of recent changes in western North American snowpack. Clim. Dyn. 38, 1885–1899 (2012).

    Article 

    Google Scholar 

  • 38.

    Tune, A. K., Druhan, J. L., Wang, J., Bennett, P. C. & Rempe, D. M. Carbon dioxide production in bedrock beneath soils substantially contributes to forest carbon cycling. J. Geophys. Res. Biogeosci. 125, e2020JG005795 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 39.

    Hasenmueller, E. A. et al. Weathering of rock to regolith: the activity of deep roots in bedrock fractures. Geoderma 300, 11–31 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 40.

    Yang, L. et al. A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).

  • 41.

    Soil Survey Staff Gridded National Soil Survey Geographic (gNATSGO) Database for the Conterminous United States (USDA, 2019); https://nrcs.app.box.com/v/soils

  • 42.

    QGIS Development Team QGIS Geographic Information System (Open Source Geospatial Foundation, 2019); http://qgis.org

  • 43.

    O’Geen, A. T. et al. Southern Sierra Critical Zone Observatory and Kings River Experimental Watersheds: a synthesis of measurements, new insights, and future directions. Vadose Zone J. 17, 180081 (2018).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Anderson, M. A., Graham, R. C., Alyanakian, G. J. & Martynn, D. Z. Late summer water status of soils and weathered bedrock in a giant sequoia grove. Soil Sci. 160, 415–422 (1995).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 45.

    Hubbert, K. R., Graham, R. C. & Anderson, M. A. Soil and weathered bedrock: components of a Jeffrey pine plantation substrate. Soil Sci. Soc. Am. J. 65, 1255–1262 (2001).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 46.

    Bornyasz, M., Graham, R. & Allen, M. Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma 126, 141–160 (2005).

    Article 
    ADS 

    Google Scholar 

  • 47.

    Sternberg, P., Anderson, M., Graham, R., Beyers, J. & Tice, K. Root distribution and seasonal water status in weathered granitic bedrock under chaparral. Geoderma 72, 89–98 (1996).

    Article 
    ADS 

    Google Scholar 

  • 48.

    Graham, R. C., Sternberg, P. D. & Tice, K. R. Morphology, porosity, and hydraulic conductivity of weathered granitic bedrock and overlying soils. Soil Sci. Soc. Am. J. 61, 516–522 (1997).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 49.

    McCole, A. A. & Stern, L. A. Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water. J. Hydrol. 342, 238–248 (2007).

    Article 
    ADS 

    Google Scholar 

  • 50.

    Schwinning, S. The water relations of two evergreen tree species in a karst savanna. Oecologia 158, 373–383 (2008).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 51.

    McCormick, E. L. et al. Dataset for “Evidence for widespread woody plant use of water stored in bedrock”. Hydroshare https://doi.org/10.4211/hs.a2f0d5fd10f14cd189a3465f72cba6f3 (2021).

  • 52.

    Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 53.

    Schenk, H. J. & Jackson, R. B. The global biogeography of roots. Ecol. Monogr. 72, 311–328 (2002).

    Article 

    Google Scholar 

  • 54.

    Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90, 480–494 (2002).

    Article 

    Google Scholar 

  • 55.

    Fan, Y., Miguez-Macho, G., Jobbagy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 56.

    Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).

    Article 

    Google Scholar 

  • 57.

    Daly, C., Smith, J. I. & Olson, K. V. Mapping atmospheric moisture climatologies across the conterminous United States. PLoS ONE 10, e0141140 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 58.

    Zhang, Y. et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 222, 165–182 (2019).

    Article 
    ADS 

    Google Scholar 

  • 59.

    Gan, R. et al. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 11, e1974 (2018).

    Article 

    Google Scholar 

  • 60.

    Dralle, D. N., Hahm, W. J., Chadwick, K. D., McCormick, E. L. & Rempe, D. M. Technical note: accounting for snow in the estimation of root-zone water storage capacity from precipitation and evapotranspiration fluxes. Hydrol. Earth Syst. Sci. 25, 2861–2867 (2021).

    Article 
    ADS 

    Google Scholar 

  • 61.

    Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).

    Article 
    ADS 

    Google Scholar 

  • 62.

    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article 
    ADS 

    Google Scholar 

  • 63.

    Singh, C., Wang-Erlandsson, L., Fetzer, I., Rockstrom, J. & van der Ent, R. Rootzone storage capacity reveals drought coping strategies along rainforest savanna transitions. Environ. Res. Lett. 15, 124021 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 64.

    Hall, D., Riggs, G. & Salomonson, V. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6 [Data set] (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2016).

  • 65.

    Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015).

  • 66.

    Peel, M. C., Finlayson, B. L. & Mcmahon, T. A. Updated world map of the Koppen–Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4, 439–473 (2007).

    ADS 

    Google Scholar 

  • 67.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar 

  • 68.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Niemeyer, R. J. et al. Spatiotemporal soil and saprolite moisture dynamics across a semi-arid woody plant gradient. J. Hydrol. 544, 21–35 (2017).

    Article 
    ADS 

    Google Scholar 

  • 70.

    Pedrazas, M. A. et al. The relationship between topography bedrock weathering and water storage across a sequence of ridges and valleys. J. Geophys. Res. Earth Surf. 126, e2020JF005848 (2021).

    ADS 

    Google Scholar 

  • 71.

    Arkley, R. J. Soil moisture use by mixed conifer forest in a summer-dry climate. Soil Sci. Soc. Am. J. 45, 423–427 (1981).

    Article 
    ADS 

    Google Scholar 

  • 72.

    Zwieniecki, M. A. & Newton, M. Water-holding characteristics of metasedimentary rock in selected forest ecosystems in southwestern Oregon. Soil Sci. Soc. Am. J. 60, 1578–1582 (1996).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 73.

    Hellmers, H., Horton, J. S., Juhren, G. & O’Keefe, J. Root systems of some chaparral plants in southern California. Ecology 36, 667–678 (1955).

    Article 

    Google Scholar 

  • 74.

    Cardella Dammeyer, H., Schwinning, S., Schwartz, B. F. & Moore, G. W. Effects of juniper removal and rainfall variation on tree transpiration in a semi-arid karst: evidence of complex water storage dynamics. Hydrol. Process. 30, 4568–4581 (2016).

    Article 
    ADS 

    Google Scholar 

  • 75.

    Twidwell, D. et al. Drought-induced woody plant mortality in an encroached semi-arid savanna depends on topoedaphic factors and land management. Appl. Veg. Sci. 17, 42–52 (2013).

    Article 

    Google Scholar 

  • 76.

    Davis, E. A. Root system of shrub live oak in relation to water yield by chaparral. Proceedings of the 1977 Meetings of the Arizona Section of the American Water Resources Association and the Hydrology Section of the Arizona Academy of Sciences. Hydrol. Water Resour. Ariz. Southwest 7, 241–248 (1977).

    Google Scholar 

  • 77.

    West, A. G., Hultine, K. R., Burtch, K. G., & Ehleringer, J. R. Seasonal variations in moisture use in a piñon–juniper woodland. Oecologia 153, 787–798 (2007).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 78.

    Seyfried, M. S. & Wilcox, B. P. Soil water storage and rooting depth: key factors controlling recharge on rangelands. Hydrol. Process. 20, 3261–3275 (2006).

    Article 
    ADS 

    Google Scholar 

  • 79.

    Dietrich, W. E. & Dunne, T. Sediment budget for a small catchment in mountainous terrain. Zeitschrift Für Geomorphologie 29, 191–206 (1978).

    Google Scholar 

  • 80.

    Litvak, M. E., Schwinning, S. & Heilman, J. L. in Ecosystem Function in Savannas (eds Hill, M. J. & Hanan, N. P.) 117–134 (2010).


  • Source: Ecology - nature.com

    Making catalytic surfaces more active to help decarbonize fuels and chemicals

    MIT-designed project achieves major advance toward fusion energy