in

Current contrasting population trends among North American hummingbirds

  • 1.

    United Nations Environment Programme. Making Peace With Nature (Tech. Rep, United Nations Environment Programme, 2021).

  • 2.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. https://doi.org/10.1038/nature14324 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Urban, M. C. Accelerating extinction risk from climate change. Science. (80-. ) 348, 571–573. https://doi.org/10.1126/science.aaa4984 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Rosenberg, K. V. et al. Decline of the North American avifauna. Science. (80-. ) 366, 120–124. https://doi.org/10.1126/science.aaw1313 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, 1211–1219. https://doi.org/10.1371/journal.pbio.0050157 (2007).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Abrahamczyk, S. & Renner, S. S. The temporal build-up of hummingbird/plant mutualisms in North America and temperate South America. BMC Evol. Biol.https://doi.org/10.1186/s12862-015-0388-z (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Grant, V. & Grant, K. A. A Hummingbird-Pollinated Species of Boraginaceae in the Arizona Flora. Proc. Natl. Acad. Sci. 66, 917–919. https://doi.org/10.1073/pnas.66.3.917 (1970).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Ratto, F. et al. Global importance of vertebrate pollinators for plant reproductive success: A meta-analysis. Front. Ecol. Environ. 16, 82–90. https://doi.org/10.1002/fee.1763 (2018).

    Article 

    Google Scholar 

  • 9.

    McGuire, J. A. et al. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910–916. https://doi.org/10.1016/j.cub.2014.03.016 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Sauer, J. R., Link, W. A., Fallon, J. E., Pardieck, K. L. & Ziolkowski, D. J. The North American breeding bird survey 1966–2011: Summary analysis and species accounts. N. Am. Fauna 79, 1–32. https://doi.org/10.3996/nafa.79.0001 (2013).

    Article 

    Google Scholar 

  • 11.

    Bairlein, F. Migratory birds under threat. Science (80-. ). 354, 547–548. https://doi.org/10.1126/science.aah6647 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Battey, C. J. Ecological release of the Anna’s Hummingbird during a Northern range expansion. Am. Nat. 194, 306–315. https://doi.org/10.1086/704249 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Clark, C. J. EBird records show substantial growth of the Allen’s Hummingbird (Selasphorus sasin sedentarius) population in urban Southern California. Condor 119, 122–130. https://doi.org/10.1650/CONDOR-16-153.1 (2017).

    Article 

    Google Scholar 

  • 14.

    Sleeter, B. M. et al. Land-cover change in the conterminous United States from 1973 to 2000. Glob. Environ. Change 23, 733–748. https://doi.org/10.1016/j.gloenvcha.2013.03.006 (2013).

    Article 

    Google Scholar 

  • 15.

    Gallant, A. L., Loveland, T. R., Sohl, T. L. & Napton, D. E. Using an ecoregion framework to analyze land-cover and land-use dynamics. Environ. Manag.https://doi.org/10.1007/s00267-003-0145-3 (2004).

    Article 

    Google Scholar 

  • 16.

    Williamson, S. L. A Field Guide to Hummingbirds of North America (Peterson Field Guide Series) (Houghton Mifflin Company, 2002).

    Google Scholar 

  • 17.

    Panjabi, A. O. et al. Avian Conservation Assessment Database Handbook Version 2021. Tech. Rep. (Partners in Flight Technical Series, Bird Conservancy of the Rockies, 2021).

    Google Scholar 

  • 18.

    Gillespie, C., Contreras-Martinez, S., Bishop, C. & Alexander, J. Rufous Hummingbird: State of the Science and Conservation : simplebooklet.com. Tech. Rep., (Western Hummingbird Partnership, 2020).

  • 19.

    International Union for Conservation of Nature. IUCN Red List Categories and Criteria: Version 3.1. Tech. Rep. (IUCN Species Survival Commission, 2001).

    Google Scholar 

  • 20.

    Lehikoinen, A. Climate change, phenology and species detectability in a monitoring scheme. Popul. Ecol. 55, 315–323. https://doi.org/10.1007/s10144-012-0359-9 (2013).

    Article 

    Google Scholar 

  • 21.

    Massimino, D., Harris, S. J. & Gillings, S. Phenological mismatch between breeding birds and their surveyors and implications for estimating population trends. J. Ornithol. 162, 143–154. https://doi.org/10.1007/s10336-020-01821-5 (2021).

    Article 

    Google Scholar 

  • 22.

    McGrath, L. J., van Riper III, C. & Fontaine, J. J. Flower power: Tree flowering phenology as a settlement cue for migrating birds. J. Anim. Ecol. 78, 22–30. https://doi.org/10.1111/j.1365-2656.2008.01464.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • 23.

    Jones, T. & Cresswell, W. The phenology mismatch hypothesis: Are declines of migrant birds linked to uneven global climate change?. J. Anim. Ecol. 79, 98–108. https://doi.org/10.1111/j.1365-2656.2009.01610.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Courter, J. R. Changes in spring arrival dates of rufous hummingbirds (Selasphorus rufus) In Western North America in the past century. Wilson J. Ornithol. 129, 535–544. https://doi.org/10.1676/16-133.1 (2017).

    Article 

    Google Scholar 

  • 25.

    Rooney, T. Deer impacts on forest ecosystems: A North American perspective. Forestry 74, 201–208. https://doi.org/10.1093/forestry/74.3.201 (2001).

    Article 

    Google Scholar 

  • 26.

    Côté, S. D., Rooney, T. P., Tremblay, J.-P., Dussault, C. & Waller, D. M. Ecological impacts of deer overabundance. Annu. Rev. Ecol. Evol. Syst. 35, 113–147. https://doi.org/10.2307/annurev.ecolsys.35.021103.30000006 (2004).

    Article 

    Google Scholar 

  • 27.

    Decalesta, D. S. Effect of white-tailed deer on songbirds within managed forests in Pennsylvania. J. Wildl. Manag. 58, 711–718 (1994).

    Article 

    Google Scholar 

  • 28.

    English, S. G. et al. Neonicotinoid pesticides exert metabolic effects on avian pollinators. Sci. Rep. 11, 2914. https://doi.org/10.1038/s41598-021-82470-3 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Bishop, C. A. et al. Determination of neonicotinoids and butenolide residues in avian and insect pollinators and their ambient environment in Western Canada (2017, 2018). Sci. Total Environ. 737, 139386. https://doi.org/10.1016/j.scitotenv.2020.139386 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Graves, E. E. et al. Analysis of insecticide exposure in California hummingbirds using liquid chromatography-mass spectrometry. Environ. Sci. Pollut. Res. 26, 15458–15466. https://doi.org/10.1007/s11356-019-04903-x (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Hill, G. E., Sargent, R. R. & Sargent, M. B. Recent change in the winter distribution of Rufous Hummingbirds. Auk 115, 240–245. https://doi.org/10.2307/4089135 (1998).

    Article 

    Google Scholar 

  • 32.

    Smith, A. C. & Edwards, B. P. M. North American Breeding Bird Survey status and trend estimates to inform a wide range of conservation needs, using a flexible Bayesian hierarchical generalized additive model. Condor 123, 1–16. https://doi.org/10.1093/ornithapp/duaa065 (2021).

    Article 

    Google Scholar 

  • 33.

    Wilson, S. et al. Prioritize diversity or declining species? Trade-offs and synergies in spatial planning for the conservation of migratory birds in the face of land cover change. Biol. Conserv. 239, 108285. https://doi.org/10.1016/j.biocon.2019.108285 (2019).

    Article 

    Google Scholar 

  • 34.

    Toledo-Aceves, T., Meave, J. A., González-Espinosa, M. & Ramírez-Marcial, N. Tropical montane cloud forests: Current threats and opportunities for their conservation and sustainable management in Mexico. J. Environ. Manag. 92, 974–981. https://doi.org/10.1016/j.jenvman.2010.11.007 (2011).

    Article 

    Google Scholar 

  • 35.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science (80-. ). 342, 850–853. https://doi.org/10.1126/SCIENCE.1244693 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Westerling, A. L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci.https://doi.org/10.1098/RSTB.2015.0178 (2016).

    Article 

    Google Scholar 

  • 37.

    Neeraja, U. V., Rajendrakumar, S., Saneesh, C. S., Dyda, V. & Knight, T. M. Fire alters diversity, composition, and structure of dry tropical forests in the Eastern Ghats. Ecol. Evol. 11, 6593–6603. https://doi.org/10.1002/ECE3.7514 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Courter, J. R., Johnson, R. J., Bridges, W. C. & Hubbard, K. G. Assessing migration of Ruby-throated Hummingbirds (Archilochus colubris) at broad spatial and temporal scales at broad spatial and temporal scales. Auk 130, 107–117. https://doi.org/10.1525/auk.2012.12058 (2013).

    Article 

    Google Scholar 

  • 39.

    Greig, E. I., Wood, E. M. & Bonter, D. N. Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding. Proc. R. Soc. B Biol. Sci.https://doi.org/10.1098/rspb.2017.0256 (2017).

    Article 

    Google Scholar 

  • 40.

    Jepson, W. L. & Hickman, J. C. The Jepson manual: Higher plants of California (University of California Press, 1993).

    Google Scholar 

  • 41.

    Scarfe, A. & Finlay, J. C. Rapid second nesting by Anna’s Hummingbird near its Northern breeding limit. West. Birds 32, 131–133 (2001).

    Google Scholar 

  • 42.

    Bibby, C. J., Burgess, N. D. & Hill, D. A. Bird Census Techniques (Academic Press, 1992).

    Google Scholar 

  • 43.

    Thogmartin, W. E. et al. A review of the population estimation approach of the North American landbird conservation plan. Auk 123, 892–904. https://doi.org/10.1093/auk/123.3.892 (2006).

    Article 

    Google Scholar 

  • 44.

    Carter, M. F., Hunter, W. C., Pashley, D. N. & Rosenberg, K. V. Setting conservation priorities for landbirds in the United States: The partners in flight approach. Auk 117, 541–548. https://doi.org/10.1093/auk/117.2.541 (2000).

    Article 

    Google Scholar 

  • 45.

    Sauer, J. R. & Link, W. A. Analysis of the North American breeding bird survey using hierarchical models. Auk 128, 87–98. https://doi.org/10.1525/auk.2010.09220 (2011).

    Article 

    Google Scholar 

  • 46.

    Sauer, J. R., Niven, D. K., Pardieck, K. L., Ziolkowski, D. J. & Link, W. A. Expanding the North American Breeding Bird Survey analysis to include additional species and regions. J. Fish Wildl. Manag. 8, 154–172. https://doi.org/10.3996/102015-JFWM-109 (2017).

    Article 

    Google Scholar 

  • 47.

    Stanton, J. C., Blancher, P., Rosenberg, K. V., Panjabi, A. O. & Thogmartin, W. E. Estimating uncertainty of North American landbird population sizes. Avian Conserv. Ecol.https://doi.org/10.5751/ACE-01331-140104 (2019).

    Article 

    Google Scholar 

  • 48.

    Schuster, R. et al. Optimizing the conservation of migratory species over their full annual cycle. Nat. Commun.https://doi.org/10.1038/s41467-019-09723-8 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Johnston, A. et al. Abundance models improve spatial and temporal prioritization of conservation resources. Ecol. Appl. 25, 1749–1756. https://doi.org/10.1890/14-1826.1 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 50.

    Robbins, C., Bystrak, D. & Geissler, P. The Breeding Bird Survey: Its First Fifteen Years, 1965–1979. Tech. Rep. (U.S. Fish and Wildlife Service, 1986).

  • 51.

    R Core Team. R: A language and environment for statistical computing (Version 4.0.3) [Computer software] (2020).

  • 52.

    Smith, A. C., Hudson, M.-A., Aponte, V. & Francis, C. North American Breeding Bird Survey—Canadian Trends Website. Data-version 2017 (2019).

  • 53.

    Edwards, B. P. M. & Smith, A. C. bbsBayes: An R package for hierarchical Bayesian analysis of North American breeding bird survey data. J. Open Res. Softw.https://doi.org/10.5334/JORS.329 (2021).

    Article 

    Google Scholar 

  • 54.

    North American Bird Conservation Initiative. Bird Conservation Region Descriptions. Tech. Rep. (U. S. Fish and Wildlife Service, 2000).

    Google Scholar 

  • Microbial community of soda Lake Van as obtained from direct and enriched water, sediment and fish samples

    Atypical for northern ungulates, energy metabolism is lowest during summer in female wild boars (Sus scrofa)