in

Neofunctionalization of an ancient domain allows parasites to avoid intraspecific competition by manipulating host behaviour

  • 1.

    Gause, G. F. & Witt, A. A. Behavior of mixed populations and the problem of natural selection. Am. Nat. 69, 596–609 (1935).

    Article 

    Google Scholar 

  • 2.

    Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).

    Article 

    Google Scholar 

  • 3.

    Ayala, F. J. Experimental invalidation of the principle of competitive exclusion. Nature 224, 1076–1079 (1969).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Bengtsson, J. Interspecific competition increases local extinction rate in a metapopulation system. Nature 340, 713–715 (1989).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Bolnick, D. I. Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410, 463–466 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 6.

    Collins, S. Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc. Biol. Sci. 278, 247–255 (2011).

    PubMed 

    Google Scholar 

  • 7.

    Osmond, M. M. & de Mazancourt, C. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B 368, 20120085 (2013).

    Article 

    Google Scholar 

  • 8.

    Birch, L. C. Selection in Drosophila pseudoobscura in relation to crowding. Evolution 9, 389–399 (1955).

    Article 

    Google Scholar 

  • 9.

    Martin, M. J., Perez-Tome, J. M. & Toro, M. A. Competition and genotypic variability in Drosophila melanogaster. Heredity 60, 119–123 (1988).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Harvey, J. A., Poelman, E. H. & Tanaka, T. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58, 333–351 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Pennacchio, F. & Strand, M. R. Evolution of developmental strategies in parasitic hymenoptera. Annu. Rev. Entomol. 51, 233–258 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Van Alphen, J. J. & Visser, M. E. Superparasitism as an adaptive strategy for insect parasitoids. Annu. Rev. Entomol. 35, 59–79 (1990).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Varaldi, J. et al. Infectious behavior in a parasitoid. Science 302, 1930–1930 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Dorn, S. & Beckage, N. E. Superparasitism in gregarious hymenopteran parasitoids: ecological, behavioural and physiological perspectives. Physiol. Entomol. 32, 199–211 (2007).

    Article 

    Google Scholar 

  • 15.

    Gandon, S., Rivero, A. & Varaldi, J. Superparasitism evolution: adaptation or manipulation? Am. Nat. 167, E1–E22 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Speirs, D. C., Sherratt, T. N. & Hubbard, S. F. Parasitoid diets: does superparasitism pay? Trends Ecol. Evol. 6, 22–25 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Tracy Reynolds, K. & Hardy, I. C. Superparasitism: a non-adaptive strategy? Trends Ecol. Evol. 19, 347–348 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Pan, M., Liu, T. & Nansen, C. Avoidance of parasitized host by female wasps of Aphidius gifuensis (Hymenoptera: Braconidae): the role of natal rearing effects and host availability? Insect Sci. 25, 1035–1044 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Potting, R. P. J., Snellen, H. M. & Vet, L. E. M. Fitness consequences of superparasitism and mechanism of host discrimination in the stem borer parasitoid Cotesia flavipes. Entomol. Exp. Appl. 82, 341–348 (1997).

    Article 

    Google Scholar 

  • 20.

    Mackauer, B. B. Influence of superparasitism on development rate and adult size in a solitary parasitoid wasp, Aphidius ervi. Funct. Ecol. 6, 302–307 (1992).

    Article 

    Google Scholar 

  • 21.

    Keasar, T. et al. Costs and consequences of superparasitism in the polyembryonic parasitoid Copidosoma koehleri (Hymenoptera: Encyrtidae). Ecol. Entomol. 31, 277–283 (2006).

    Article 

    Google Scholar 

  • 22.

    Silva-Torres, C. S. A., Ramos, I. T., Torres, J. B. & Barros, R. Superparasitism and host size effects in Oomyzus sokolowskii, a parasitoid of diamondback moth. Entomol. Exp. Appl. 133, 65–73 (2009).

    Article 

    Google Scholar 

  • 23.

    Wylie, H. G. Delayed development of Microctonus vittatae (Hymenoptera: Braconidae) in superparasitized adults of Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Can. Entomol. 115, 441–442 (1983).

    Article 

    Google Scholar 

  • 24.

    White, J. A. & Andow, D. A. Benefits of self-superparasitism in a polyembryonic parasitoid. Biol. Control 46, 133–139 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Yamada, Y. Y. & Sugaura, K. Evidence for adaptive self-superparasitism in the dryinid parasitoid Haplogonatopus atratus when conspecifics are present. Oikos 103, 175–181 (2003).

    Article 

    Google Scholar 

  • 26.

    Varaldi, J., Fouillet, P., Bouletreau, M. & Fleury, F. Superparasitism acceptance and patch-leaving mechanisms in parasitoids: a comparison between two sympatric wasps. Anim. Behav. 69, 1227–1234 (2005).

    Article 

    Google Scholar 

  • 27.

    Varaldi, J., Patot, S., Nardin, M. & Gandon, S. A virus-shaping reproductive strategy in a Drosophila parasitoid. Adv. Parasitol. 70, 333–363 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Carton, Y., Bouletreau, M., van Alphen, J. J. M. & van Lenteren, J. C. The Drosophila parasitic wasps. in The Genetics and Biology of Drosophila (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 347–394 (Academic Press, 1986).

  • 29.

    Kacsoh, B. Z., Lynch, Z. R., Mortimer, N. T. & Schlenke, T. A. Fruit flies medicate offspring after seeing parasites. Science 339, 947–950 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Krzemien, J. et al. Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446, 325–328 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Kraaijeveld, A. R. & Godfray, H. C. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389, 278–280 (1997).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Hwang, R. Y. et al. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol. 17, 2105–2116 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Mortimer, N. T. et al. Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity. Proc. Natl Acad. Sci. USA 110, 9427–9432 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Huang, J. et al. Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite. Nat. Commun. 12, 234 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Martinson, E. O., Mrinalini, Kelkar, Y. D., Chang, C. H. & Werren, J. H. The evolution of venom by co-option of single-copy genes. Curr. Biol. 27, 2007–2013 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell. Dev. Biol. 21, 247–269 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13–22 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Xu, J. et al. RhoGAPs attenuate cell proliferation by direct interaction with p53 tetramerization domain. Cell Rep. 3, 1526–1538 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Hinge, A. et al. p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nat. Commun. 8, 14382 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Werner, E. GTPases and reactive oxygen species: switches for killing and signaling. J. Cell Sci. 117, 143–153 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Bailey, A. P. et al. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 163, 340–353 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Boguski, M. S. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643–654 (1993).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Rittinger, K. et al. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388, 693–697 (1997).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Outreman, Y., Le Ralec, A., Plantegenest, M., Chaubet, B. & Pierre, J. S. Superparasitism limitation in an aphid parasitoid: cornicle secretion avoidance and host discrimination ability. J. Insect Physiol. 47, 339–348 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Hofsvang, T. Discrimination between unparasitized and parasitized hosts in hymenopterous parasitoids. Acta Entomol. Bohemosl 87, 161–175 (1990).

    Google Scholar 

  • 47.

    van Lenteren, J. C. in Semiochemicals: Their Role in Pest Control (eds Nordlund, D. A., Jones, R. L. & Lewis, W. J.) 153–179 (Wiley and Sons, 1981).

  • 48.

    Ganesalingam, V. K. Mechanism of discrimination between parasitized and unparasitized hosts by Venturia canescens (hymenoptera: Ichneumonidae). Entomol. Exp. Appl. 17, 36–44 (2011).

    Article 

    Google Scholar 

  • 49.

    Hoffmeister, T. S. & Roitberg, B. D. To mark the host or the patch: decisions of a parasitoid searching for concealed host larvae. Evol. Ecol. 11, 145–168 (1997).

    Article 

    Google Scholar 

  • 50.

    Agboka, K. et al. Self-, intra-, and interspecific host discrimination in Telenomus busseolae Gahan and T. isis Polaszek (Hymenoptera: Scelionidae), sympatric egg parasitoids of the African cereal stem borer Sesamia calamistis Hampson (Lepidoptera: Noctuidae). J. Insect Behav. 15, 1–12 (2002).

    Article 

    Google Scholar 

  • 51.

    Liang, Q., Jia, Y. & Liu, T. Self- and conspecific discrimination between unparasitized and parasitized green peach aphid (Hemiptera: Aphididae), by Aphelinus asychis (Hymenoptera: Aphelinidae). J. Econ. Entomol. 110, 430–437 (2017).

    PubMed 

    Google Scholar 

  • 52.

    Gandon, S., Varaldi, J., Fleury, F. & Rivero, A. Evolution and manipulation of parasitoid egg load. Evolution 63, 2974–2984 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 53.

    Hughes, D. P. & Libersat, F. Neuroparasitology of parasite-insect associations. Annu. Rev. Entomol. 63, 471–487 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Sberro, H. et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 178, 1245–1259 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Zuzarte-Luis, V. & Mota, M. M. Parasite sensing of host nutrients and environmental cues. Cell Host Microbe 23, 749–758 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Cox, F. E. G. Parasites affect behavior of mice. Nature 294, 515–515 (1981).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. eLife 7, e34414 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Hoover, K. et al. A gene for an extended phenotype. Science 333, 1401–140 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Mcallister, M. K. & Roitberg, B. D. Adaptive suicidal-behavior in pea aphids. Nature 328, 797–799 (1987).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Maure, F., Brodeur, J., Droit, A., Doyon, J. & Thomas, F. Bodyguard manipulation in a multipredator context: different processes, same effect. Behav. Process. 99, 81–86 (2013).

    Article 

    Google Scholar 

  • 61.

    Mohan, P. & Sinu, P. A. Parasitoid wasp usurps its host to guard its pupa against hyperparasitoids and induces rapid behavioral changes in the parasitized host. PLoS ONE 12, e0178108 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 62.

    Muller, C. B. & Schmidhempel, P. Exploitation of cold temperature as defense against parasitoids in bumblebees. Nature 363, 65–67 (1993).

    ADS 
    Article 

    Google Scholar 

  • 63.

    Noubade, R. et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509, 235–239 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Louradour, I. et al. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife 6, e25496 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Sinenko, S. A., Shim, J. & Banerjee, U. Oxidative stress in the haematopoietic niche regulates the cellular immune response in. Drosoph. EMBO Rep. 13, 83–89 (2012).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Wang, Y. et al. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915–1928 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Colinet, D. et al. Extracellular superoxide dismutase in insects: characterization, function, and interspecific variation in parasitoid wasp venom. J. Biol. Chem. 286, 40110–40121 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Colinet, D. et al. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem. Mol. Biol. 43, 601–611 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Carton, Y., Frey, F. & Nappi, A. Genetic determinism of the cellular immune reaction in Drosophila melanogaster. Heredity 69, 393–399 (1992).

    PubMed 
    Article 

    Google Scholar 

  • 70.

    Colinet, D., Schmitz, A., Depoix, D., Crochard, D. & Poirie, M. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 3, 2029–2037 (2007).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Colinet, D. et al. The origin of intraspecific variation of virulence in an eukaryotic immune suppressive parasite. PLoS Pathog. 6, e1001206 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Schlenke, T. A., Morales, J., Govind, S. & Clark, A. G. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog. 3, 1486–1501 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 73.

    Anderl, I. et al. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection. PLoS Pathog. 12, e1005746 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 74.

    Forbes, A. A. et al. Revisiting the particular role of host shifts in initiating insect speciation. Evolution 71, 1126–1137 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 75.

    Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 77.

    Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. P. Roy. Soc. B-Biol. Sci. 274, 839–844 (2007).

    Google Scholar 

  • 78.

    Laskowski, K. L. & Bell, A. M. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol. Lett. 16, 746–753 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Huang, J., Reilein, A. & Kalderon, D. Yorkie and Hedgehog independently restrict BMP production in escort cells to permit germline differentiation in the Drosophila ovary. Development 144, 2584–2594 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 81.

    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 83.

    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 84.

    Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Phylogenet. Evol. 35, 543–548 (2017).

    Article 
    CAS 

    Google Scholar 

  • 86.

    Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 110, 462–467 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Werren, J. H. et al. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327, 343–348 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 92.

    Consortium, H. G. S. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 93.

    Geib, S. M., Liang, G. H., Murphy, T. D. & Sim, S. B. Whole genome sequencing of the braconid parasitoid wasp Fopius arisanus, an important biocontrol agent of pest tepritid fruit flies. G3-Genes Genom. Genet. 7, 2407–2411 (2017).

    CAS 

    Google Scholar 

  • 94.

    Standage, D. S. et al. Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol. Ecol. 25, 1769–1784 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 95.

    Lindsey, A. R. et al. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biol. 16, 54 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 96.

    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Korf, I. Gene finding in novel genomes. BMC Biol. 5, 59 (2004).

    Google Scholar 

  • 98.

    Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 99.

    Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 100.

    Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 101.

    Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 102.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 103.

    Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25, 402–408 (2001).

    CAS 
    Article 

    Google Scholar 

  • 105.

    Zhang, X. S., Wang, T., Lin, X. W., Denlinger, D. L. & Xu, W. H. Reactive oxygen species extend insect life span using components of the insulin-signaling pathway. Proc. Natl Acad. Sci. USA 114, 7832–7840 (2017).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Daniel Cohn on the benefits of high-efficiency, flexible-fuel engines for heavy-duty trucking

    Concrete’s role in reducing building and pavement emissions