in

High turn-over rates at the upper range limit and elevational source-sink dynamics in a widespread songbird

  • 1.

    Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford University Press, 2003).

    Google Scholar 

  • 2.

    Sexton, J. P., McIntyre, P., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Article 

    Google Scholar 

  • 3.

    Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. & Taper, M. L. Theoretical models of species’ borders: single species approaches. Oikos 108, 18–27 (2005).

    Article 

    Google Scholar 

  • 4.

    Gaston, K. J. Geographic range limits: Achieving synthesis. Proc. R. Soc. Lond. B 276, 1395–1406 (2009).

    Google Scholar 

  • 5.

    Parmesan, C. et al. Empirical perspectives on species borders: From traditional biogeography to global change. Oikos 108, 58–75 (2005).

    Article 

    Google Scholar 

  • 6.

    Travis, J. M. J. & Dytham, C. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 337–348 (Oxford University Press, 2012).

    Chapter 

    Google Scholar 

  • 7.

    Kirkpatrick, M. & Barton, N. H. Evolution of a species’ range. Am. Nat. 150, 1–23 (1997).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Case, T. J. & Taper, M. L. Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders. Am. Nat. 155, 583–605 (2000).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).

    Article 

    Google Scholar 

  • 10.

    Hargreaves, A. L., Eckert, C. G. & Bailey, J. Evolution of dispersal and mating systems along geographic gradients. Implications for shifting ranges. Funct. Ecol. 28, 5–21 (2014).

    Article 

    Google Scholar 

  • 11.

    Hille, S. M. & Cooper, C. B. Elevational trends in life histories. Revising the pace-of-life framework. Biol. Rev. Camb. Philos. Soc. 90, 204–213 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Boyle, W. A., Sandercock, B. K. & Martin, K. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: A meta-analysis. Biol. Rev. 91, 469–482 (2016).

    Article 

    Google Scholar 

  • 13.

    Badyaev, A. V. & Ghalambor, C. K. Evolution of life histories along elevational gradients: Trade-off between parental care and fecundity. Ecology 82, 2948–2960 (2001).

    Article 

    Google Scholar 

  • 14.

    Bears, H., Martin, K. & White, G. C. Breeding in high-elevation habitat results in shift to slower life-history strategy within a single species. J. Anim. Ecol. 78, 365–375 (2009).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 15.

    Caro, L. M., Caycedo-Rosales, P. C., Bowie, R. C. K., Slabbekoorn, H. & Cadena, C. D. Ecological speciation along an elevational gradient in a tropical passerine bird?. J. Evol. Biol. 26, 357 (2013).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 16.

    Branch, C. L., Jahner, J. P., Kozlovsky, D. Y., Parchman, T. L. & Pravosudov, V. V. Absence of population structure across elevational gradients despite large phenotypic variation in mountain chickadees (Poecile gambeli). R. Soc. Open Sci. 4, 170057. https://doi.org/10.1098/rsos.170057 (2017).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Chamberlain, D. E. et al. The altitudinal frontier in avian climate impact research. Ibis 154, 205–209 (2012).

    Article 

    Google Scholar 

  • 18.

    Hargreaves, A. L., Samis, K. E. & Eckert, C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Graham, C. H., Silva, N. & Velásquez-Tibatá, J. Evaluating the potential causes of range limits of birds of the Colombian Andes. J. Biogeogr. 37, 1863–1875 (2010).

    Google Scholar 

  • 20.

    Popy, S., Bordignon, L. & Prodon, R. A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. J. Biogeogr. 37, 57–67 (2010).

    Article 

    Google Scholar 

  • 21.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 22.

    Maggini, R. et al. Are Swiss birds tracking climate change?. Ecol. Model. 222, 21–32 (2011).

    Article 

    Google Scholar 

  • 23.

    Pearce-Higgins, J. W. & Green, R. E. Climate Change and Birds: Impacts and Conservation Responses (Cambridge University Press, 2014).

    Book 

    Google Scholar 

  • 24.

    Knaus, P. et al. Schweizer Brutvogelatlas 2013–2016. Verbreitung und Bestandsentwicklung der Vögel in der Schweiz und im Fürstentum Liechtenstein (Schweizerische Vogelwarte, 2018).

    Google Scholar 

  • 25.

    Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C. & Shrubb, M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37, 771–788 (2000).

    Article 

    Google Scholar 

  • 26.

    Chamberlain, D. & Pearce-Higgins, J. Impacts of climate change on upland birds. Complex interactions, compensatory mechanisms and the need for long-term data. Ibis 155, 451–455 (2013).

    Article 

    Google Scholar 

  • 27.

    Sergio, F. & Newton, I. Occupancy as a measure of territory quality. J. Anim. Ecol. 72, 857–865 (2003).

    Article 

    Google Scholar 

  • 28.

    Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 19, 16–36 (1969).

    Article 

    Google Scholar 

  • 29.

    Grüebler, M. U., Korner-Nievergelt, F. & von Hirschheydt, J. The reproductive benefits of livestock farming in barn swallows Hirundo rustica: Quality of nest site or foraging habitat?. J. Appl. Ecol. 47, 1340–1347 (2010).

    Article 

    Google Scholar 

  • 30.

    Schaub, M. & von Hirschheydt, J. Effects of current reproduction on apparent survival, breeding dispersal, and future reproduction in barn swallows assessed by multistate capture-recapture models. J. Anim. Ecol. 78, 625–635 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Furrer, R. D. & Pasinelli, G. Empirical evidence for source-sink populations: A review on occurrence, assessments and implications. Biol. Rev. Camb. Philos. Soc. 91, 782–795 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Plard, F., Turek, D., Grüebler, M. U. & Schaub, M. IPM2: Toward better understanding and forecasting of population dynamics. Ecol. Monogr. 8, e01364. https://doi.org/10.1002/ecm.1364 (2019).

    Article 

    Google Scholar 

  • 33.

    Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of pre- and post-fledging timing decisions in a double-brooded passerine. Ecology 89, 2736–2745 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Grüebler, M. U., Morand, M. & Naef-Daenzer, B. A predictive model of the density of airborne insects in agricultural environments. Agric. Ecosyst. Environ. 123, 75–80 (2008).

    Article 

    Google Scholar 

  • 35.

    Jenni-Eiermann, S., Glaus, E., Grüebler, M. U., Schwabl, H. & Jenni, L. Glucocorticoid response to food availability in breeding barn swallows (Hirundo rustica). Gen. Comp. Endocrinol. 155, 558–565 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Schifferli, L., Grüebler, M. U., Meijer, H. A. J., Visser, G. H. & Naef-Daenzer, B. Barn Swallow Hirundo rustica parents work harder when foraging conditions are good. Ibis 156, 777–787 (2014).

    Article 

    Google Scholar 

  • 37.

    Shields, W. M. Factors Affecting nest and site fidelity in Adirondack barn swallows (Hirundo rustica). Auk 101, 780–789 (1984).

    Article 

    Google Scholar 

  • 38.

    Saino, N., Calza, S., Ninni, P. & Møller, A. P. Barn swallows trade survival against offspring condition and immunocompetence. J. Anim. Ecol. 68, 999–1009 (1999).

    Article 

    Google Scholar 

  • 39.

    Turner, A. The Barn Swallow (T & A D Poyser, 2006).

    Google Scholar 

  • 40.

    Newton, I. The Migration Ecology of Birds 1st edn. (Academic Press, 2007).

    Google Scholar 

  • 41.

    Ambrosini, R. & Saino, N. Environmental effects at two nested spatial scales on habitat choice and breeding performance of barn swallow. Evol. Ecol. 24, 491–508 (2010).

    Article 

    Google Scholar 

  • 42.

    Ambrosini, R. et al. The distribution and colony size of barn swallows in relation to agricultural land use. J. Appl. Ecol. 39, 524–534 (2002).

    Article 

    Google Scholar 

  • 43.

    Evans, K. L., Bradbury, R. B. & Wilson, J. D. Selection of hedgerows by Swallows Hirundo rustica foraging on farmland: the influence of local habitat and weather. Bird Study 50, 8–14 (2003).

    Article 

    Google Scholar 

  • 44.

    Newton, I. Population Limitation in Bird (Academic Press, 1998).

    Google Scholar 

  • 45.

    Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67, 518–536 (1998).

    Article 

    Google Scholar 

  • 46.

    Scandolara, C. et al. Context-, phenotype-, and kin-dependent natal dispersal of barn swallows (Hirundo rustica). Behav. Ecol. 25, 180–190 (2014).

    Article 

    Google Scholar 

  • 47.

    Schaub, M., von Hirschheydt, J. & Grüebler, M. U. Differential contribution of demographic rate synchrony to population synchrony in barn swallows. J. Anim. Ecol. 84, 1530–1541 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 48.

    Camfield, A. F., Pearson, S. F. & Martin, K. Life history variation between high and low elevation subspecies of horned larks Eremophila spp. J. Avian Biol. 41, 273–281 (2010).

    Article 

    Google Scholar 

  • 49.

    Møller, A. P. Phenotype-dependent arrival time and its consequences in a migratory bird. Behav. Ecol. Sociobiol. 35, 115–122 (1994).

    Article 

    Google Scholar 

  • 50.

    Møller, A. P. Sexual Selection and the Barn Swallow (Oxford University Press, 1994).

    Google Scholar 

  • 51.

    Lerche-Jørgensen, M., Korner-Nievergelt, F., Tøttrup, A. P., Willemoes, M. & Thorup, K. Early returning long-distance migrant males do pay a survival cost. Ecol. Evol. 8, 11434–11449. https://doi.org/10.1002/ece3.4569 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Pulliam, H. R. On the relationship between niche and distribution. Ecol. Lett. 3, 349–361 (2000).

    Article 

    Google Scholar 

  • 53.

    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).

    Article 

    Google Scholar 

  • 54.

    Møller, A. P., de Lope, F. & Saino, N. Parasitism, immunity, and arrival date in a migratory bird, the barn swallow. Ecology 85, 206–219 (2004).

    Article 

    Google Scholar 

  • 55.

    Huntley, B., Green, R. E., Collingham, Y. C. & Willis, S. G. A Climatic Atlas of European Breeding Birds (Lynx Edicions, 2007).

    Google Scholar 

  • 56.

    Scridel, D. et al. A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis 160, 489–515 (2018).

    Article 

    Google Scholar 

  • 57.

    Cormack, R. M. Estimates of survival from the sighting of marked animals. Biometrika 51, 429–438 (1964).

    MATH 
    Article 

    Google Scholar 

  • 58.

    Jolly, G. Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52, 225–247 (1965).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 59.

    Seber, G. A. F. A note on the multiple-recapture census. Biometrika 52, 249–259 (1965).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 60.

    Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).

    Article 

    Google Scholar 

  • 61.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • 62.

    Saino, N., Martinelli, R. & Romano, M. Ecological and phenological covariates of offspring sex ratio in barn swallows. Evol. Ecol. 22, 659–674 (2008).

    Article 

    Google Scholar 

  • 63.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

  • 64.

    Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2007).

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Daniel Cohn on the benefits of high-efficiency, flexible-fuel engines for heavy-duty trucking

    Concrete’s role in reducing building and pavement emissions