in

Assessing the origin, genetic structure and demographic history of the common pheasant (Phasianus colchicus) in the introduced European range

  • 1.

    Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics 617 (Cambridge University Press, 2002).

    Book 

    Google Scholar 

  • 2.

    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. PNAS 101, 15261–15264 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Ahmadi, M. et al. Evolutionary applications of phylo-genetically-informed ecological niche modelling (ENM) to explore cryptic diversification over cryptic refugia. Mol. Phylogenet. Evol. 127, 712–722 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Ashrafzadeh, M. R. et al. Large-scale mitochondrial DNA analysis reveals new light on the phylogeography of Central and Eastern-European Brown hare (Lepus europaeus Pallas, 1778). PLoS ONE 13, e0204653 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 5.

    Tóth, B. et al. Genetic diversity and structure of common carp (Cyprinus carpio L.) in the Centre of Carpathian Basin: Implications for conservation. Genes 11, 1268 (2020).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Broquet, T., Ray, N., Petit, E., Fryxell, J. M. & Burel, F. Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landsc. Ecol. 21, 877–889 (2006).

    Article 

    Google Scholar 

  • 7.

    Cushman, S. A., McKelvey, K. S., Hayden, J. & Schwartz, M. K. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am. Nat. 168, 486–499 (2006).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Khosravi, R. et al. Effect of landscape features on genetic structure of the goitered gazelle (Gazella subgutturosa) in Central Iran. Conserv. Genet. 19, 323–336 (2018).

    Article 

    Google Scholar 

  • 9.

    Adavodi, R., Khosravi, R., Cushman, S. A. & Kaboli, M. Topographical features and forest cover influence landscape connectivity and gene flow of the Caucasian pit viper, Gloydius caucasicus (Nikolsky, 1916), Iran. Landsc. Ecol. 34, 2615–2630 (2019).

    Article 

    Google Scholar 

  • 10.

    Moussy, C. et al. Migration and dispersal patterns of bats and their influence on genetic structure. Mammal Rev. 43, 183–195 (2013).

    Article 

    Google Scholar 

  • 11.

    Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun. 11, 1–11 (2020).

    MathSciNet 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Barilani, M. et al. Detecting introgressive hybridisation in rock partridge populations (Alectoris graeca) in Greece through Bayesian admixture analyses of multilocus genotypes. Conserv. Genet. 8, 343–354 (2007).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Randi, E. Detecting hybridization between wild species and their domesticated relatives. Mol. Ecol. 17, 285–293 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Kusza, S., Ashrafzadeh, M. R., Tóth, B. & Jávor, A. Maternal genetic variation in the northeastern Hungarian fallow deer (Dama dama) population. Mamm. Biol. 93, 21–28 (2018).

    Article 

    Google Scholar 

  • 15.

    Laikre, L., Schwartz, M. K., Waples, R. S., Ryman, N. & GeM Working Group. Compromising genetic diversity in the wild: Unmonitored large-scale release of plants and animals. Trends Ecol. Evol. 25, 520–529 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 16.

    Söderquist, P. et al. Admixture between released and wild game birds: a changing genetic landscape in European mallards (Anas platyrhynchos). Eur. J. Wildl. Res. 63, 98 (2017).

    Article 

    Google Scholar 

  • 17.

    Robertson, P. A. et al. Pheasant release in Great Britain: Long-term and large-scale changes in the survival of a managed bird. Eur. J. Wildlife Res. 63, 100 (2017).

    Article 

    Google Scholar 

  • 18.

    Mank, J. E., Carlson, J. E. & Brittingham, M. C. A century of hybridization: Decreasing genetic distance between American black ducks and mallards. Conserv. Genet. 5, 395–403 (2004).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Blanco-Aguiar, J. A. et al. Assessment of game restocking contributions to anthropogenic hybridization: The case of the Iberian red-legged partridge. Anim. Conserv. 11, 535–545 (2008).

    Article 

    Google Scholar 

  • 20.

    Sanchez-Donoso, I. et al. Are farm-reared quails for game restocking really common quails (Coturnix coturnix)? a genetic approach. PLoS ONE 7, e39031 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Liu, Y. et al. Genome assembly of the common pheasant Phasianus colchicus: A model for speciation and ecological genomics. Genome Biol. Evol. 11, 3326–3331 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Braasch, T., Pes, T., Michel, S. & Jacken, H. The subspecies of the common pheasant Phasianus colchicus in the wild and captivity. Int. J. Galliformes Conserv. 2, 6–13 (2011).

    Google Scholar 

  • 23.

    Robertson, D. H. P. & Hill, D. A. The Pheasant: Ecology, Management and Conservation 281 (Blackwell Scientific Publication, 1988).

    Google Scholar 

  • 24.

    Hill, D. A. & Robertson, P. Hand reared pheasants: how do they compare with wild birds. Game Conserv. Ann. Rep. 17, 76–84 (1986).

    Google Scholar 

  • 25.

    Pfarr, J. True Pheasants: A Noble Quarry 248 (Hancock House Publishers Ltd, 2012).

    Google Scholar 

  • 26.

    BirdLife International. Phasianus colchicus. The IUCN Red List of Threatened Species 2016: e.T45100023A85926819. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T45100023A85926819.en

  • 27.

    Ashoori, A. et al. Habitat modeling of the common pheasant Phasianus colchicus (Galliformes: Phasianidae) in a highly modified landscape: application of species distribution models in the study of a poorly documented bird in Iran. Eur. Zool. J. 85, 372–380 (2018).

    Article 

    Google Scholar 

  • 28.

    Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World: New World Vultures to Guineafowl Vol. 2, 638 (Lynx Edicions, 1994).

    Google Scholar 

  • 29.

    Boev, Z. N. Late Pleistocene and Holocene avifauna from three caves in the vicinity of Tran (Pernik District-W Bulgaria). In Proceedings of the First National Conference on Environment and Cultural Heritage in Karst, Sofia, Bulgaria, 10–12 November 2000 (eds Delchev, P. et al.) (Earth and Man National Museum, Association of Environment and Cultural Heritage in Karst, 2001).

    Google Scholar 

  • 30.

    Qu, H. et al. Subspecies boundaries and recent evolution history of the common pheasant (Phasianus colchicus) across China. Biochem. Syst. Ecol. 71, 155–162 (2017).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Kayvanfar, N., Aliabadian, M., Niu, X., Zhang, Z. & Liu, Y. Phylogeography of the common pheasant Phasianus colchicus. Ibis 159, 430–442 (2017).

    Article 

    Google Scholar 

  • 32.

    Todesco, M. et al. Hybridization and extinction. Evol. Appl. 9, 892–908 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Santilli, F. & Bagliacca, M. Factors influencing pheasant Phasianus colchicus harvesting in Tuscany, Italy. Wildl. Biol. 14, 281–287 (2008).

    Article 

    Google Scholar 

  • 34.

    Lavadinović, V., Beuković, D. & Popović, Z. Common Pheasant (Phasianus colchicus L.1758) management in Serbia. Contemp. Agric. 68, 71–79 (2019).

    Article 

    Google Scholar 

  • 35.

    Fenberg, P. B. & Roy, K. Ecological and evolutionary consequences of size-selective harvesting: How much do we know?. Mol. Ecol. 17, 209–220 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Allendorf, F. W. & Hard, J. J. Human-induced evolution caused by unnatural selection through harvest of wild animals. PNAS 106, 9987–9994 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Darimont, C. T. et al. Human predators outpace other agents of trait change in the wild. PNAS 106, 952–954 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Madden, J. R. & Whiteside, M. A. Selection on behavioural traits during ‘unselective’harvesting means that shy pheasants better survive a hunting season. Anim. Behav. 87, 129–135 (2014).

    Article 

    Google Scholar 

  • 39.

    Csányi, S. The effect of hand-reared pheasants on the wild population in Hungary: A modelling approach. Hung. Small Game B. 5, 71–82 (2000).

    Google Scholar 

  • 40.

    Queirós, J., Gortázar, C. & Alves, P. C. Deciphering anthropogenic effects on the genetic background of the Red deer in the Iberian Peninsula. Front. Ecol. Evol. 8, 147 (2020).

    Article 

    Google Scholar 

  • 41.

    Giesel, J. T., Brazeau, D., Koppelman, R. & Shiver, D. Ring-necked pheasant population genetic structure. J. Wildl. Manag. 61, 1332–1338 (1997).

    Article 

    Google Scholar 

  • 42.

    Qu, J., Liu, N., Bao, X. & Wang, X. Phylogeography of the ring-necked pheasant (Phasianus colchicus) in China. Mol. Phylogenet. Evol. 52, 125–132 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Liu, Y., Zhan, X., Wang, N., Chang, J. & Zhang, Z. Effect of geological vicariance on mitochondrial DNA differentiation in Common Pheasant populations of the Loess Plateau and eastern China. Mol. Phylogenet. Evol. 55, 409–417 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 44.

    Zhang, L., An, B., Backström, N. & Liu, N. Phylogeography-based delimitation of subspecies boundaries in the Common Pheasant (Phasianus colchicus). Biochem. Genet. 52, 38–51 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Liu, S. et al. Regional drivers of diversification in the late Quaternary in a widely distributed generalist species, the common pheasant Phasianus colchicus. J. Biogeogr. 47, 2714–2727 (2020).

    Article 

    Google Scholar 

  • 46.

    Avise, J. C. Phylogeography: The History and Formation of Species 464 (Harvard University Press, 2000).

    Book 

    Google Scholar 

  • 47.

    Corin, S. E., Lester, P. J., Abbott, K. L. & Ritchie, P. A. Inferring historical introduction pathways with mitochondrial DNA: the case of introduced Argentine ants (Linepithema humile) into New Zealand. Divers. Distrib. 13, 510–518 (2007).

    Article 

    Google Scholar 

  • 48.

    Oskarsson, M. C. et al. Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proc. R. Soc. B. 279, 967–974 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 49.

    Garrett, L. J. et al. Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population. Sci. Rep. 10, 1–12 (2020).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Brito, P. H. Contrasting patterns of mitochondrial and microsatellite genetic structure among Western European populations of tawny owls (Strix aluco). Mol. Ecol. 16, 3423–3437 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Suárez, N. M. et al. Phylogeography and genetic struc-ture of the Canarian common chaffinch (Fringilla coelebs) inferred with mtDNA and microsatellite loci. Mol. Phylogenet. Evol. 53, 556–564 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Piry, S., Luikart, G. & Cornuet, J. M. Computer note. BOTTLENECK: A computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 90, 502–503 (1999).

    Article 

    Google Scholar 

  • 53.

    Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Slatkin, M. & Hudson, R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562 (1991).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Wang, B. et al. Development and characterization of novel microsatellite markers for the Common Pheasant (Phasianus colchicus) using RAD-seq. Avian Res. 8, 4 (2017).

    Article 

    Google Scholar 

  • 56.

    Grant, W. A. S. & Bowen, B. W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415–426 (1998).

    Article 

    Google Scholar 

  • 57.

    Barrowclough, G. F., Johnson, N. K. & Zink, R. M. In Current Ornithology Vol. 2 (ed. Johnston, R. F.) 135–154 (Springer, 1985).

    Chapter 

    Google Scholar 

  • 58.

    Zink, R. M. Phylogeographic studies of North American birds. In Avian Molecular Evolution and Systematics (ed. Mindell, D. P.) 301–324 (Academic Press, 1997).

    Chapter 

    Google Scholar 

  • 59.

    Payne, R. B. Natal dispersal and population structure in a migratory songbird, the Indigo Bunting. Evolution 45, 49–62 (1991).

    PubMed 
    Article 

    Google Scholar 

  • 60.

    Stenzel, L. E. et al. Long-distance breeding dispersal of snowy plovers in western North America. J. Anim. Ecol. 63, 887–902 (1994).

    Article 

    Google Scholar 

  • 61.

    Zhu, C. et al. Genetic structure and population dynamics of the silver pheasant (Lophura nycthemera) in southern China. Turk. J. Zool. 44, 31–43 (2020).

    Article 

    Google Scholar 

  • 62.

    Faragó, S. Élőhelyfejlesztés az Apróvad-Gazdálkodásban: A Fenntartható Apróvad-Gazdálkodás Környezeti Alapjai 341 (Mezőgazda Kiadó, 1997).

    Google Scholar 

  • 63.

    Faragó, S. & Náhlik, A. A Vadállomány Szabályozása: A Fenntartható Vadgazdálkodás Populációökológiai Alapjai 347 (Mezőgazda kiadó, 2011).

    Google Scholar 

  • 64.

    Randi, E. & Lucchini, V. Organization and evolution of the mitochondrial DNA control region in the avian genus Alector-is. J. Mol. Evol. 47, 449–462 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Xia, X. DAMBE6: New tools for microbial genomics, phylogenetics, and molecular evolution. J. Hered. 108, 431–437 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Hasegawa, M., Kishino, H. & Yano, T. A. Dating of the humanape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic struc-tures of populations. BMC Bioinform. 9, 1–14 (2008).

    Article 
    CAS 

    Google Scholar 

  • 74.

    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 75.

    Heled, J. & Drummond, A. J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Team, R.C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

    Google Scholar 

  • 77.

    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 80.

    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    MathSciNet 
    MATH 

    Google Scholar 

  • 81.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

    Article 

    Google Scholar 

  • 84.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    Langguth, T. et al. Genetic structure and phylogeogra-phy of a European flagship species, the white-tailed sea eagle Haliaeetus albicilla. J. Avian Biol. 44, 263–271 (2013).

    Article 

    Google Scholar 

  • 86.

    Väli, Ü., Dombrovski, V., Dzmitranok, M., Maciorowski, G. & Meyburg, B. U. High genetic diversity and low differentia-tion retained in the European fragmented and declining Greater Spotted Eagle (Clanga clanga) population. Sci. Rep. 9, 1–11 (2019).

    Article 
    CAS 

    Google Scholar 

  • 87.

    Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 88.

    Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes. 4, 137–138 (2004).

    Article 

    Google Scholar 

  • 89.

    Corander, J., Sirén, J. & Arjas, E. Bayesian spatial modeling of genetic population structure. Comput. Stat. 23, 111–129 (2008).

    MathSciNet 
    Article 

    Google Scholar 

  • 90.

    Galpern, P., Peres-Neto, P. R., Polfus, J. & Manseau, M. MEMGENE: Spatial pattern detection in genetic distance data. Methods Ecol. Evol. 5, 1116–1120 (2014).

    Article 

    Google Scholar 

  • 91.

    Peakall, R., Ruibal, M. & Lindenmayer, D. B. Spatial autocorrelation analysis offers new insights into gene flow in the Aus-tralian bush rat, Rattus fuscipes. Evolution 57, 1182–1195 (2003).

    PubMed 
    Article 

    Google Scholar 

  • 92.

    Mullins, J. et al. The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland. Acta Theriol. 59, 367–376 (2014).

    Article 

    Google Scholar 

  • 93.

    Oksanen, J. Vegan: R Functions for Vegetation Ecologists. http://cc.oulu.fi/_jarioksa/softhelp/vegan.html. (2005).

  • 94.

    Wright, S. Isolation by distance. Genetics 28, 114 (1943).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and re-search: An update. Bioinformatics 28, 2537–2539 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Goudet, J. FSTAT, A Program to Estimate and Test Gene Diversities and Fixation Indices, Version 2.9. 3. http://www2.unil.ch/popgen/softwares/fstat.htm (2001).

  • 97.

    Yeh, F. C. et al. POPGENE version 1.32. Computer Program and Documentation Distributed by the Author. http://www.ualberta.ca/~fyeh/popgene.html (accessed on 23 January 2013).

  • 98.

    Belkhir, K., Borsa, P., Chikhi, L. & Bonhomme, F. Genetix 4.05: WindowsTM Software for Population Genetics (Laboratoire Genome de Populations University of Montpelier II, 1996).

    Google Scholar 

  • 99.

    Luikart, G., Sherwin, W. B., Steele, B. M. & Allendorf, F. W. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol. 7, 963–974 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 100.

    Luikart, G., Allendorf, F. W., Cornuet, J. M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Functional diversity effects on productivity increase with age in a forest biodiversity experiment

    MIT Energy Night 2021: Connecting global innovators to local talent